Dergi makalesi Açık Erişim
Yilmaz, Buse; Aktemur, Baris; Garzaran, Maria J.; Kamin, Sam; Kirac, Furkan
{ "@context": "https://schema.org/", "@id": 57993, "@type": "ScholarlyArticle", "creator": [ { "@type": "Person", "affiliation": "Ozyegin Univ, TR-34794 Istanbul, Turkey", "name": "Yilmaz, Buse" }, { "@type": "Person", "affiliation": "Ozyegin Univ, TR-34794 Istanbul, Turkey", "name": "Aktemur, Baris" }, { "@type": "Person", "name": "Garzaran, Maria J." }, { "@type": "Person", "name": "Kamin, Sam" }, { "@type": "Person", "affiliation": "Ozyegin Univ, TR-34794 Istanbul, Turkey", "name": "Kirac, Furkan" } ], "datePublished": "2016-01-01", "description": "Runtime specialization is used for optimizing programs based on partial information available only at runtime. In this paper we apply autotuning on runtime specialization of Sparse Matrix-Vector Multiplication to predict a best specialization method among several. In 91% to 96% of the predictions, either the best or the second-best method is chosen. Predictions achieve average speedups that are very close to the speedups achievable when only the best methods are used. By using an efficient code generator and a carefully designed set of matrix features, we show the runtime costs can be amortized to bring performance benefits for many real-world cases.", "headline": "Autotuning Runtime Specialization for Sparse Matrix-Vector Multiplication", "identifier": 57993, "image": "https://aperta.ulakbim.gov.tr/static/img/logo/aperta_logo_with_icon.svg", "license": "http://www.opendefinition.org/licenses/cc-by", "name": "Autotuning Runtime Specialization for Sparse Matrix-Vector Multiplication", "url": "https://aperta.ulakbim.gov.tr/record/57993" }
Görüntülenme | 33 |
İndirme | 9 |
Veri hacmi | 1.9 kB |
Tekil görüntülenme | 29 |
Tekil indirme | 9 |