Dergi makalesi Açık Erişim
Yilmaz, Buse; Aktemur, Baris; Garzaran, Maria J.; Kamin, Sam; Kirac, Furkan
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/57993</identifier> <creators> <creator> <creatorName>Yilmaz, Buse</creatorName> <givenName>Buse</givenName> <familyName>Yilmaz</familyName> <affiliation>Ozyegin Univ, TR-34794 Istanbul, Turkey</affiliation> </creator> <creator> <creatorName>Aktemur, Baris</creatorName> <givenName>Baris</givenName> <familyName>Aktemur</familyName> <affiliation>Ozyegin Univ, TR-34794 Istanbul, Turkey</affiliation> </creator> <creator> <creatorName>Garzaran, Maria J.</creatorName> <givenName>Maria J.</givenName> <familyName>Garzaran</familyName> </creator> <creator> <creatorName>Kamin, Sam</creatorName> <givenName>Sam</givenName> <familyName>Kamin</familyName> </creator> <creator> <creatorName>Kirac, Furkan</creatorName> <givenName>Furkan</givenName> <familyName>Kirac</familyName> <affiliation>Ozyegin Univ, TR-34794 Istanbul, Turkey</affiliation> </creator> </creators> <titles> <title>Autotuning Runtime Specialization For Sparse Matrix-Vector Multiplication</title> </titles> <publisher>Aperta</publisher> <publicationYear>2016</publicationYear> <dates> <date dateType="Issued">2016-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/57993</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1145/2851500</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">Runtime specialization is used for optimizing programs based on partial information available only at runtime. In this paper we apply autotuning on runtime specialization of Sparse Matrix-Vector Multiplication to predict a best specialization method among several. In 91% to 96% of the predictions, either the best or the second-best method is chosen. Predictions achieve average speedups that are very close to the speedups achievable when only the best methods are used. By using an efficient code generator and a carefully designed set of matrix features, we show the runtime costs can be amortized to bring performance benefits for many real-world cases.</description> </descriptions> </resource>
Görüntülenme | 33 |
İndirme | 9 |
Veri hacmi | 1.9 kB |
Tekil görüntülenme | 29 |
Tekil indirme | 9 |