Dergi makalesi Açık Erişim

Efficient and automated computation of accurate molecular geometries using focal-point approximations to large-basis coupled-cluster theory

Warden, Constance E.; Smith, Daniel G. A.; Burns, Lori A.; Bozkaya, Ugur; Sherrill, C. David


MARC21 XML

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Smith, Daniel G. A.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Burns, Lori A.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Bozkaya, Ugur</subfield>
    <subfield code="u">Hacettepe Univ, Dept Chem, TR-06800 Ankara, Turkey</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Sherrill, C. David</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="p">JOURNAL OF CHEMICAL PHYSICS</subfield>
    <subfield code="v">152</subfield>
    <subfield code="n">12</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="a">Creative Commons Attribution</subfield>
    <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1063/5.0004863</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Efficient and automated computation of accurate molecular geometries using focal-point approximations to large-basis coupled-cluster theory</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Warden, Constance E.</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:zenodo.org:5751</subfield>
    <subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="2">opendefinition.org</subfield>
    <subfield code="a">cc-by</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-01-01</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="u">https://aperta.ulakbim.gov.trrecord/5751/files/bib-1c0a9392-c2c7-4e3c-9d44-07d1fdfb0812.txt</subfield>
    <subfield code="z">md5:64bb66dac2a8e8d4e24b4e3c239bf160</subfield>
    <subfield code="s">247</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <controlfield tag="005">20210315061604.0</controlfield>
  <controlfield tag="001">5751</controlfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">The focal-point approach, combining several quantum chemistry computations to estimate a more accurate computation at a lower expense, is effective and commonly used for energies. However, it has not yet been widely adopted for properties such as geometries. Here, we examine several focal-point methods combining MOller-Plesset perturbation theory (MP2 and MP2.5) with coupled-cluster theory through perturbative triples [CCSD(T)] for their effectiveness in geometry optimizations using a new driver for the Psi4 electronic structure program that efficiently automates the computation of composite-energy gradients. The test set consists of 94 closed-shell molecules containing first- and/or second-row elements. The focal-point methods utilized combinations of correlation-consistent basis sets cc-pV(X+d)Z and heavy-aug-cc-pV(X+d)Z (X = D, T, Q, 5, 6). Focal-point geometries were compared to those from conventional CCSD(T) using basis sets up to heavy-aug-cc-pV5Z and to geometries from explicitly correlated CCSD(T)-F12 using the cc-pVXZ-F12 (X = D, T) basis sets. All results were compared to reference geometries reported by Karton et al. [J. Chem. Phys. 145, 104101 (2016)] at the CCSD(T)/heavy-aug-cc-pV6Z level of theory. In general, focal-point methods based on an estimate of the MP2 complete-basis-set limit, with a coupled-cluster correction evaluated in a (heavy-aug-)cc-pVXZ basis, are of superior quality to conventional CCSD(T)/(heavy-aug-)cc-pV(X+1)Z and sometimes approach the errors of CCSD(T)/(heavy-aug-)cc-pV(X+2)Z. However, the focal-point methods are much faster computationally. For the benzene molecule, the gradient of such a focal-point approach requires only 4.5% of the computation time of a conventional CCSD(T)/cc-pVTZ gradient and only 0.4% of the time of a CCSD(T)/cc-pVQZ gradient.</subfield>
  </datafield>
</record>
27
5
görüntülenme
indirilme
Görüntülenme 27
İndirme 5
Veri hacmi 1.2 kB
Tekil görüntülenme 26
Tekil indirme 5

Alıntı yap