Dergi makalesi Açık Erişim

Efficient and automated computation of accurate molecular geometries using focal-point approximations to large-basis coupled-cluster theory

Warden, Constance E.; Smith, Daniel G. A.; Burns, Lori A.; Bozkaya, Ugur; Sherrill, C. David


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/5751</identifier>
  <creators>
    <creator>
      <creatorName>Warden, Constance E.</creatorName>
      <givenName>Constance E.</givenName>
      <familyName>Warden</familyName>
    </creator>
    <creator>
      <creatorName>Smith, Daniel G. A.</creatorName>
      <givenName>Daniel G. A.</givenName>
      <familyName>Smith</familyName>
    </creator>
    <creator>
      <creatorName>Burns, Lori A.</creatorName>
      <givenName>Lori A.</givenName>
      <familyName>Burns</familyName>
    </creator>
    <creator>
      <creatorName>Bozkaya, Ugur</creatorName>
      <givenName>Ugur</givenName>
      <familyName>Bozkaya</familyName>
      <affiliation>Hacettepe Univ, Dept Chem, TR-06800 Ankara, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Sherrill, C. David</creatorName>
      <givenName>C. David</givenName>
      <familyName>Sherrill</familyName>
    </creator>
  </creators>
  <titles>
    <title>Efficient And Automated Computation Of Accurate Molecular Geometries Using Focal-Point Approximations To Large-Basis Coupled-Cluster Theory</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2020</publicationYear>
  <dates>
    <date dateType="Issued">2020-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/5751</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1063/5.0004863</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">The focal-point approach, combining several quantum chemistry computations to estimate a more accurate computation at a lower expense, is effective and commonly used for energies. However, it has not yet been widely adopted for properties such as geometries. Here, we examine several focal-point methods combining MOller-Plesset perturbation theory (MP2 and MP2.5) with coupled-cluster theory through perturbative triples [CCSD(T)] for their effectiveness in geometry optimizations using a new driver for the Psi4 electronic structure program that efficiently automates the computation of composite-energy gradients. The test set consists of 94 closed-shell molecules containing first- and/or second-row elements. The focal-point methods utilized combinations of correlation-consistent basis sets cc-pV(X+d)Z and heavy-aug-cc-pV(X+d)Z (X = D, T, Q, 5, 6). Focal-point geometries were compared to those from conventional CCSD(T) using basis sets up to heavy-aug-cc-pV5Z and to geometries from explicitly correlated CCSD(T)-F12 using the cc-pVXZ-F12 (X = D, T) basis sets. All results were compared to reference geometries reported by Karton et al. [J. Chem. Phys. 145, 104101 (2016)] at the CCSD(T)/heavy-aug-cc-pV6Z level of theory. In general, focal-point methods based on an estimate of the MP2 complete-basis-set limit, with a coupled-cluster correction evaluated in a (heavy-aug-)cc-pVXZ basis, are of superior quality to conventional CCSD(T)/(heavy-aug-)cc-pV(X+1)Z and sometimes approach the errors of CCSD(T)/(heavy-aug-)cc-pV(X+2)Z. However, the focal-point methods are much faster computationally. For the benzene molecule, the gradient of such a focal-point approach requires only 4.5% of the computation time of a conventional CCSD(T)/cc-pVTZ gradient and only 0.4% of the time of a CCSD(T)/cc-pVQZ gradient.</description>
  </descriptions>
</resource>
27
5
görüntülenme
indirilme
Görüntülenme 27
İndirme 5
Veri hacmi 1.2 kB
Tekil görüntülenme 26
Tekil indirme 5

Alıntı yap