Dergi makalesi Açık Erişim
Ertas, Yelda; Uyar, Tamer
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Ertas, Yelda</dc:creator> <dc:creator>Uyar, Tamer</dc:creator> <dc:date>2017-01-01</dc:date> <dc:description>Herein, polybenzoxazine based cross-linked cellulose acetate nanofibrous membrane exhibiting enhanced thermal/mechanical properties and improved adsorption efficiency was successfully produced via electrospinning and thermal curing. Initially, suitable solution composition was determined by varying the amount of the benzoxazine (BA-a) resin, cellulose acetate (CA) and citric acid (CTR) to obtain uniform nanofibrous membrane via electrospinning. Subsequently, thermal curing was performed by step-wise at 150, 175, 200 and 225 degrees C to obtain cross-linked composite nanofibrous membranes. SEM images and solubility experiments demonstrated that most favorable result was obtained from the 10% (w/v) CA, 5% (w/v) BA-a and 1% (w/v) CTR composition and cross-linked nanofibrous membrane (CA10/PolyBA-a5/CTR1) was obtained after the thermal curing. Chemical structural changes (ring opening) occurred by thermal curing revealed successful cross-linking of BA-a in the composite nanofibrous membrane. Thermal, mechanical and adsorption performance of pristine CA and CA10/PolyBA-a5/CTR1 nanofibrous membranes were studied. Char yield of the pristine CA nanofibrous membrane has increased notably from 12 to 24.7% for composite CA10/PolyBA-a5/CTR1 membrane. When compared to pristine CA membrane, CA10/PolyBA-a5/CTR1 nanofibrous membrane has shown superior mechanical properties having tensile strength and Young's modulus of 8.64 +/- 0.63 MPa and 213.87 +/- 30.79 MPa, respectively. Finally, adsorption performance of pristine CA and CA10/PolyBA-a5/CTR1 nanofibrous membranes was examined by a model polycyclic aromatic hydrocarbon (PAH) compound (i.e. phenanthrene) in aqueous solution, in which CA10/PolyBA-a5/CTR1 nanofibrous membrane has shown better removal efficiency (98.5%) and adsorption capacity (592 mu g/g).</dc:description> <dc:identifier>https://aperta.ulakbim.gov.trrecord/48663</dc:identifier> <dc:identifier>oai:zenodo.org:48663</dc:identifier> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights> <dc:source>CARBOHYDRATE POLYMERS 177 378-387</dc:source> <dc:title>Fabrication of cellulose acetate/polybenzoxazine cross-linked electrospun nanofibrous membrane for water treatment</dc:title> <dc:type>info:eu-repo/semantics/article</dc:type> <dc:type>publication-article</dc:type> </oai_dc:dc>
| Görüntülenme | 71 |
| İndirme | 8 |
| Veri hacmi | 1.5 kB |
| Tekil görüntülenme | 68 |
| Tekil indirme | 8 |