Dergi makalesi Açık Erişim
Ekinci, Gulnaz Boruzanli; Bujtas, Csilla
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/4761</identifier>
<creators>
<creator>
<creatorName>Ekinci, Gulnaz Boruzanli</creatorName>
<givenName>Gulnaz Boruzanli</givenName>
<familyName>Ekinci</familyName>
<affiliation>Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia</affiliation>
</creator>
<creator>
<creatorName>Bujtas, Csilla</creatorName>
<givenName>Csilla</givenName>
<familyName>Bujtas</familyName>
<affiliation>Ege Univ, Dept Math, TR-35100 Izmir, Turkey</affiliation>
</creator>
</creators>
<titles>
<title>Bipartite Graphs With Close Domination And K-Domination Numbers</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2020</publicationYear>
<dates>
<date dateType="Issued">2020-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/4761</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1515/math-2020-0047</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">Let k be a positive integer and let G be a graph with vertex set V(G). A subset D subset of V(G) is a k-dominating set if every vertex outside D is adjacent to at least k vertices in D. The k-domination number gamma(k)(G) is the minimum cardinality of a k-dominating set in G. For any graph G, we know that gamma(k)(G) &gt;= gamma(G) + k - 2 where Delta(G) &gt;= k &gt;= 2 and this bound is sharp for every k &gt;= 2. In this paper, we characterize bipartite graphs satisfying the equality for k &gt;= 3 and present a necessary and sufficient condition for a bipartite graph to satisfy the equality hereditarily when k = 3. We also prove that the problem of deciding whether a graph satisfies the given equality is NP-hard in general.</description>
</descriptions>
</resource>
| Görüntülenme | 72 |
| İndirme | 10 |
| Veri hacmi | 1.3 kB |
| Tekil görüntülenme | 65 |
| Tekil indirme | 10 |