Dergi makalesi Açık Erişim
Alkan, E.; Ledoan, A. H.; Zaharescu, A.
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/39203</identifier>
<creators>
<creator>
<creatorName>Alkan, E.</creatorName>
<givenName>E.</givenName>
<familyName>Alkan</familyName>
<affiliation>Koc Univ, Dept Math, TR-34450 Istanbul, Turkey</affiliation>
</creator>
<creator>
<creatorName>Ledoan, A. H.</creatorName>
<givenName>A. H.</givenName>
<familyName>Ledoan</familyName>
<affiliation>Univ Rochester, Dept Math, Rochester, NY 14627 USA</affiliation>
</creator>
<creator>
<creatorName>Zaharescu, A.</creatorName>
<givenName>A.</givenName>
<familyName>Zaharescu</familyName>
<affiliation>Univ Illinois, Dept Math, Urbana, IL 61801 USA</affiliation>
</creator>
</creators>
<titles>
<title>Asymptotic Behavior Of The Irrational Factor</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2008</publicationYear>
<dates>
<date dateType="Issued">2008-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/39203</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1007/s10474-008-7212-9</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">We study the irrational factor function I(n) introduced by Atanassov and defined by I(n) = Pi(k)(k=1)p(v)(1/alpha v), where n = Pi(k)(v=1) p(v)(alpha v) is the prime factorization of n. We show that the sequence {G(n)/n}(n &gt;= 1), where G(n) = Pi(n)(v=1) I(v)(1/n), is covergent; this answers a question of Panaitopol. We also establish asymptotic formulas for averages of the function I(n).</description>
</descriptions>
</resource>
| Görüntülenme | 35 |
| İndirme | 9 |
| Veri hacmi | 1.2 kB |
| Tekil görüntülenme | 34 |
| Tekil indirme | 9 |