Dergi makalesi Açık Erişim
Alkan, E.; Ledoan, A. H.; Zaharescu, A.
We study the irrational factor function I(n) introduced by Atanassov and defined by I(n) = Pi(k)(k=1)p(v)(1/alpha v), where n = Pi(k)(v=1) p(v)(alpha v) is the prime factorization of n. We show that the sequence {G(n)/n}(n >= 1), where G(n) = Pi(n)(v=1) I(v)(1/n), is covergent; this answers a question of Panaitopol. We also establish asymptotic formulas for averages of the function I(n).
| Dosya adı | Boyutu | |
|---|---|---|
|
bib-65bfad36-4ffc-47ce-844d-9c492c899b94.txt
md5:99bcd02251144b8c60cffa58bf32faea |
136 Bytes | İndir |
| Görüntülenme | 35 |
| İndirme | 9 |
| Veri hacmi | 1.2 kB |
| Tekil görüntülenme | 34 |
| Tekil indirme | 9 |