Dergi makalesi Açık Erişim
Goncharov, Alexander; Ural, Zeliha
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2018-01-01</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">Bilkent Univ, Dept Math, TR-06800 Ankara, Turkey</subfield> <subfield code="a">Goncharov, Alexander</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield> <subfield code="a">Creative Commons Attribution</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Bilkent Univ, Dept Math, TR-06800 Ankara, Turkey</subfield> <subfield code="a">Ural, Zeliha</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="o">oai:zenodo.org:32833</subfield> <subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a">We construct topological bases in spaces of Whitney functions on Cantor sets, which were introduced by the first author. By means of suitable individual extensions of basis elements, we construct a linear continuous extension operator, when it exists for the corresponding space. In general, elements of the basis are restrictions of polynomials to certain subsets. In the case of small sets, we can present strict polynomial bases as well.</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.1215/20088752-2017-0024</subfield> <subfield code="2">doi</subfield> </datafield> <controlfield tag="005">20210315184737.0</controlfield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">BASES IN SOME SPACES OF WHITNEY FUNCTIONS</subfield> </datafield> <datafield tag="909" ind1="C" ind2="4"> <subfield code="n">1</subfield> <subfield code="v">9</subfield> <subfield code="c">56-71</subfield> <subfield code="p">ANNALS OF FUNCTIONAL ANALYSIS</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="2">opendefinition.org</subfield> <subfield code="a">cc-by</subfield> </datafield> <controlfield tag="001">32833</controlfield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="b">article</subfield> <subfield code="a">publication</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="u">https://aperta.ulakbim.gov.trrecord/32833/files/bib-1692cdf6-1296-4447-87d5-f475cd24a73a.txt</subfield> <subfield code="z">md5:ee21955b15e83da96d6b67a47d7246c3</subfield> <subfield code="s">119</subfield> </datafield> </record>
Görüntülenme | 56 |
İndirme | 11 |
Veri hacmi | 1.3 kB |
Tekil görüntülenme | 56 |
Tekil indirme | 11 |
Goncharov, A. ve Ural, Z. (2018). BASES IN SOME SPACES OF WHITNEY FUNCTIONS. ANNALS OF FUNCTIONAL ANALYSIS, 9(1), 56–71. doi:10.1215/20088752-2017-0024