Dergi makalesi Açık Erişim

BASES IN SOME SPACES OF WHITNEY FUNCTIONS

Goncharov, Alexander; Ural, Zeliha


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/32833</identifier>
  <creators>
    <creator>
      <creatorName>Goncharov, Alexander</creatorName>
      <givenName>Alexander</givenName>
      <familyName>Goncharov</familyName>
      <affiliation>Bilkent Univ, Dept Math, TR-06800 Ankara, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Ural, Zeliha</creatorName>
      <givenName>Zeliha</givenName>
      <familyName>Ural</familyName>
      <affiliation>Bilkent Univ, Dept Math, TR-06800 Ankara, Turkey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Bases In Some Spaces Of Whitney Functions</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2018</publicationYear>
  <dates>
    <date dateType="Issued">2018-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/32833</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1215/20088752-2017-0024</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">We construct topological bases in spaces of Whitney functions on Cantor sets, which were introduced by the first author. By means of suitable individual extensions of basis elements, we construct a linear continuous extension operator, when it exists for the corresponding space. In general, elements of the basis are restrictions of polynomials to certain subsets. In the case of small sets, we can present strict polynomial bases as well.</description>
  </descriptions>
</resource>
35
8
görüntülenme
indirilme
Görüntülenme 35
İndirme 8
Veri hacmi 952 Bytes
Tekil görüntülenme 35
Tekil indirme 8

Alıntı yap