Dergi makalesi Açık Erişim

Molecular and in silico cloning, identification, and preharvest period expression analysis of a putative cytochrome P450 monooxygenase gene from Camellia sinensis (L.) Kuntze (tea)

Eminoglu, Aysenur; Akturk Dizman, Yesim; Guzel, Sule; Belduz, Ali Osman


Dublin Core

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Eminoglu, Aysenur</dc:creator>
  <dc:creator>Akturk Dizman, Yesim</dc:creator>
  <dc:creator>Guzel, Sule</dc:creator>
  <dc:creator>Belduz, Ali Osman</dc:creator>
  <dc:date>2018-01-01</dc:date>
  <dc:description>Cytochrome P450 monooxygenases are one of the largest heme-containing protein groups, and the majority of them catalyze hydroxylation reactions dependent on nicotinamide adenine dinucleotide phosphate and oxygen. Cytochrome P450 (CYP) enzymes function in a wide range of monooxygenation reactions essential in primary and secondary metabolism in plants. Camellia sinensis (L.) Kuntze is a commercially and economically valuable plant due to its medicinally important secondary metabolites and as a beloved beverage. Cytochrome P450 monooxygenases play a significant role in the biosynthesis of a variety of secondary metabolites in tea. Although the biosynthesis of secondary metabolites has been investigated in detail, there have been limited studies conducted on identifying the genetic mechanisms of CYP-catalyzed secondary metabolic pathways in the C. sinensis (tea) plant. In our study, we characterized a putative C. sinensis (L.) Kuntze cytochrome P450 monooxygenase gene (Csp450), which has 1759 bp full-length cDNA with 49 bp of 5 ' and 183 bp of 3 ' untranslated regions. The CDS of the gene is 1527 bp and 508 amino acids in length. BLAST results of the deduced amino acid sequence revealed a high similarity with the CYP704C1-like superfamily. Preharvest period gene expression analysis from May, July, and September did not show any difference.</dc:description>
  <dc:identifier>https://aperta.ulakbim.gov.trrecord/30267</dc:identifier>
  <dc:identifier>oai:zenodo.org:30267</dc:identifier>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights>
  <dc:source>TURKISH JOURNAL OF BIOLOGY 42(1) 1-11</dc:source>
  <dc:title>Molecular and in silico cloning, identification, and preharvest period expression analysis of a putative cytochrome P450 monooxygenase gene from Camellia sinensis (L.) Kuntze (tea)</dc:title>
  <dc:type>info:eu-repo/semantics/article</dc:type>
  <dc:type>publication-article</dc:type>
</oai_dc:dc>
38
17
görüntülenme
indirilme
Görüntülenme 38
İndirme 17
Veri hacmi 43.0 MB
Tekil görüntülenme 38
Tekil indirme 17

Alıntı yap