Dergi makalesi Açık Erişim
Unlu, Hueseyin; Yueruem, Ozan Rasit; Yildiz, Ali; Demirors, Onur
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Unlu, Hueseyin</dc:creator> <dc:creator>Yueruem, Ozan Rasit</dc:creator> <dc:creator>Yildiz, Ali</dc:creator> <dc:creator>Demirors, Onur</dc:creator> <dc:date>2025-01-01</dc:date> <dc:description>MethodologyIn this research, we conducted a case study to establish a foundation for size measurement and effort estimation in DWH projects. We first applied a productivity-based estimation approach using linear regression with the ISBSG repository to assist organizations without historical data. We then evaluated various machine learning algorithms to improve estimation accuracy. Finally, we tested a combined model that integrates both approaches for estimating effort in external projects.ResultsUsing the ISBSG dataset, linear regression models based on productivity achieved a Mean Magnitude of Relative Error (MMRE) of 0.285. Machine learning algorithms improved accuracy by 22.81%, reducing the MMRE to 0.220. The final model, applied to external projects, yielded MRE values between 0.010 and 0.245.ConclusionThe ISBSG repository is a valuable resource for effort estimation in DWH projects. Combining productivity-based estimation with machine learning enhances accuracy and predictive performance, making it a more reliable approach than traditional models.</dc:description> <dc:identifier>https://aperta.ulakbim.gov.trrecord/279147</dc:identifier> <dc:identifier>oai:aperta.ulakbim.gov.tr:279147</dc:identifier> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights> <dc:source>SOFTWARE-PRACTICE & EXPERIENCE 55(3) 18</dc:source> <dc:title>Application of a Size Measurement Standard for Data Warehouse Projects</dc:title> <dc:type>info:eu-repo/semantics/article</dc:type> <dc:type>publication-article</dc:type> </oai_dc:dc>
| Görüntülenme | 0 |
| İndirme | 0 |
| Veri hacmi | 0 Bytes |
| Tekil görüntülenme | 0 |
| Tekil indirme | 0 |