Dergi makalesi Açık Erişim
Unlu, Hueseyin; Yueruem, Ozan Rasit; Yildiz, Ali; Demirors, Onur
{
"conceptrecid": "279146",
"created": "2025-04-17T19:45:11.279422+00:00",
"doi": "10.1002/spe.3391",
"files": [
{
"bucket": "52021538-e4ba-47df-b08f-c08fd5df36ae",
"checksum": "md5:22e8ec020dcfa1bd823f025804d85760",
"key": "bib-3129b6f5-943e-44e3-80e7-cc5dc14a79fd.txt",
"links": {
"self": "https://aperta.ulakbim.gov.tr/api/files/52021538-e4ba-47df-b08f-c08fd5df36ae/bib-3129b6f5-943e-44e3-80e7-cc5dc14a79fd.txt"
},
"size": 179,
"type": "txt"
}
],
"id": 279147,
"links": {
"badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.1002/spe.3391.svg",
"bucket": "https://aperta.ulakbim.gov.tr/api/files/52021538-e4ba-47df-b08f-c08fd5df36ae",
"doi": "https://doi.org/10.1002/spe.3391",
"html": "https://aperta.ulakbim.gov.tr/record/279147",
"latest": "https://aperta.ulakbim.gov.tr/api/records/279147",
"latest_html": "https://aperta.ulakbim.gov.tr/record/279147"
},
"metadata": {
"access_right": "open",
"access_right_category": "success",
"communities": [
{
"id": "tubitak-destekli-proje-yayinlari"
}
],
"creators": [
{
"affiliation": "Izmir Inst Technol, Izmir, Turkiye",
"name": "Unlu, Hueseyin"
},
{
"affiliation": "Izmir Inst Technol, Izmir, Turkiye",
"name": "Yueruem, Ozan Rasit"
},
{
"name": "Yildiz, Ali"
},
{
"affiliation": "Izmir Inst Technol, Izmir, Turkiye",
"name": "Demirors, Onur"
}
],
"description": "<p>MethodologyIn this research, we conducted a case study to establish a foundation for size measurement and effort estimation in DWH projects. We first applied a productivity-based estimation approach using linear regression with the ISBSG repository to assist organizations without historical data. We then evaluated various machine learning algorithms to improve estimation accuracy. Finally, we tested a combined model that integrates both approaches for estimating effort in external projects.ResultsUsing the ISBSG dataset, linear regression models based on productivity achieved a Mean Magnitude of Relative Error (MMRE) of 0.285. Machine learning algorithms improved accuracy by 22.81%, reducing the MMRE to 0.220. The final model, applied to external projects, yielded MRE values between 0.010 and 0.245.ConclusionThe ISBSG repository is a valuable resource for effort estimation in DWH projects. Combining productivity-based estimation with machine learning enhances accuracy and predictive performance, making it a more reliable approach than traditional models.</p>",
"doi": "10.1002/spe.3391",
"has_grant": false,
"journal": {
"issue": "3",
"pages": "18",
"title": "SOFTWARE-PRACTICE & EXPERIENCE",
"volume": "55"
},
"license": {
"id": "cc-by"
},
"publication_date": "2025-01-01",
"relations": {
"version": [
{
"count": 1,
"index": 0,
"is_last": true,
"last_child": {
"pid_type": "recid",
"pid_value": "279147"
},
"parent": {
"pid_type": "recid",
"pid_value": "279146"
}
}
]
},
"resource_type": {
"subtype": "article",
"title": "Dergi makalesi",
"type": "publication"
},
"science_branches": [
"Di\u011fer"
],
"title": "Application of a Size Measurement Standard for Data Warehouse Projects"
},
"owners": [
1
],
"revision": 1,
"stats": {
"downloads": 0.0,
"unique_downloads": 0.0,
"unique_views": 0.0,
"version_downloads": 0.0,
"version_unique_downloads": 0.0,
"version_unique_views": 0.0,
"version_views": 0.0,
"version_volume": 0.0,
"views": 0.0,
"volume": 0.0
},
"updated": "2025-04-17T19:45:11.318518+00:00"
}
| Görüntülenme | 0 |
| İndirme | 0 |
| Veri hacmi | 0 Bytes |
| Tekil görüntülenme | 0 |
| Tekil indirme | 0 |