Konferans bildirisi Açık Erişim

Data-Driven Software Engineering: A Systematic Literature Review

Yalciner, Aybuke; Dikici, Ahmet; Gokalp, Ebru


MARC21 XML

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">user-tubitak-adresli-yayinlar</subfield>
    <subfield code="o">oai:aperta.ulakbim.gov.tr:275607</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Over the past few years, emerging technologies have had a significant impact on the processes of software engineering (SE). Consequently, there has been a shift from a more experience-based approach to a data-driven decision-making approach. This shift to data-driven decision-making has resulted in more reliable and accurate decision-making, ultimately leading to more efficient and effective SE processes and a reduction in rework. Our study involved a comprehensive systematic literature review(SLR) examining the utilization of data-driven approaches in SE processes over the last decade. Our analysis of 34 primary studies revealed that data-driven approaches are most commonly utilized. After analyzing the primary studies, we found that data-driven-methods are commonly employed in SE processes for software management and software testing. Researchers are delving into subfields of artificial intelligence, including machine learning and deep learning, to devise decision-making models for SE processes that have undergone extensive validation. We aim to provide valuable insights into the usage of data-driven approaches in SE by conducting a systematic mapping based on the studies that we have found.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="a">SYSTEMS, SOFTWARE AND SERVICES PROCESS IMPROVEMENT, EUROSPI 2024, PT I</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="a">Creative Commons Attribution</subfield>
    <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Yalciner, Aybuke</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="z">md5:d33d585b8672e83c313a166bddddbc6b</subfield>
    <subfield code="s">184</subfield>
    <subfield code="u">https://aperta.ulakbim.gov.trrecord/275607/files/bib-ef51be6f-ddf9-4eb9-b26e-c4d06e46a7a1.txt</subfield>
  </datafield>
  <controlfield tag="005">20250417122930.0</controlfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2024-01-01</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1007/978-3-031-71139-8_2</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Data-Driven Software Engineering: A Systematic Literature Review</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Dikici, Ahmet</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Gokalp, Ebru</subfield>
    <subfield code="u">Hacettepe Univ, Dept Comp Sci, Ankara, Turkiye</subfield>
  </datafield>
  <controlfield tag="001">275607</controlfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-tubitak-adresli-yayinlar</subfield>
  </datafield>
</record>
0
0
görüntülenme
indirilme
Görüntülenme 0
İndirme 0
Veri hacmi 0 Bytes
Tekil görüntülenme 0
Tekil indirme 0

Alıntı yap