Konferans bildirisi Açık Erişim
Yalciner, Aybuke; Dikici, Ahmet; Gokalp, Ebru
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/275607</identifier>
<creators>
<creator>
<creatorName>Yalciner, Aybuke</creatorName>
<givenName>Aybuke</givenName>
<familyName>Yalciner</familyName>
</creator>
<creator>
<creatorName>Dikici, Ahmet</creatorName>
<givenName>Ahmet</givenName>
<familyName>Dikici</familyName>
</creator>
<creator>
<creatorName>Gokalp, Ebru</creatorName>
<givenName>Ebru</givenName>
<familyName>Gokalp</familyName>
<affiliation>Hacettepe Univ, Dept Comp Sci, Ankara, Turkiye</affiliation>
</creator>
</creators>
<titles>
<title>Data-Driven Software Engineering: A Systematic Literature Review</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2024</publicationYear>
<dates>
<date dateType="Issued">2024-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/275607</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1007/978-3-031-71139-8_2</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract"><p>Over the past few years, emerging technologies have had a significant impact on the processes of software engineering (SE). Consequently, there has been a shift from a more experience-based approach to a data-driven decision-making approach. This shift to data-driven decision-making has resulted in more reliable and accurate decision-making, ultimately leading to more efficient and effective SE processes and a reduction in rework. Our study involved a comprehensive systematic literature review(SLR) examining the utilization of data-driven approaches in SE processes over the last decade. Our analysis of 34 primary studies revealed that data-driven approaches are most commonly utilized. After analyzing the primary studies, we found that data-driven-methods are commonly employed in SE processes for software management and software testing. Researchers are delving into subfields of artificial intelligence, including machine learning and deep learning, to devise decision-making models for SE processes that have undergone extensive validation. We aim to provide valuable insights into the usage of data-driven approaches in SE by conducting a systematic mapping based on the studies that we have found.</p></description>
</descriptions>
</resource>
| Görüntülenme | 0 |
| İndirme | 0 |
| Veri hacmi | 0 Bytes |
| Tekil görüntülenme | 0 |
| Tekil indirme | 0 |