Konferans bildirisi Açık Erişim

Using Geographic Information Systems to Analyze the Sustainability of Wetlands under Climate Change in Nurdağı, Gaziantep (Türkiye)

   Çelekli, Abuzer; Zariç, Özgür Eren

This research examined the impact of climate change and land use changes (LUC) on wetland areas in the Nurdağı district of Gaziantep, utilizing Geographic Information Systems (GIS). Over the period from 1990 to 2018, significant shifts in climate patterns, including rising temperatures and varying precipitation, have led to considerable changes in wetland ecosystems and land use. The study aimed to analyze historical trends and forecast future developments in wetlands and land use due to these climatic shifts and human activities, using GIS analyses with both historical and contemporary climate data, alongside satellite imagery. Noteworthy findings include a significant negative correlation between agriculture and temperature (p<0.05) and a positive correlation between wetlands and precipitation (p<0.05). Additionally, significant correlations were observed between agriculture and urban areas (p<0.05) and between wetlands and swamp areas (p<0.01), highlighting the intricate interactions between land use changes and climate factors. The Wetland Sustainability Index (WSI) calculations indicated that rising temperatures, fluctuating precipitation, and increased human activities have had a profound impact on wetland areas. Specifically, the decline in wetland water levels due to rising temperatures and urban growth has further compromised the ecosystem services provided by these wetlands. The study concluded that climate change exerts both direct and indirect effects on the wetlands of Nurdağı, negatively influencing biodiversity and ecological functions. This research provides valuable insights for policymakers and conservationists, stressing the urgent need for effective wetland management strategies at both regional and national levels.

Dosyalar (1.2 MB)
Dosya adı Boyutu
Using Geographic Information Systems to Analyze the Sustainability of Nurdağı .pdf
md5:bcf050a44af213ef52f7c828bcf375fc
1.2 MB İndir
  • [10] R. Kolka, C. Trettin, L. Windham-Myers, The importance of wetland carbon dynamics to society: Insight from the second state of the carbon cycle science report, Wetland Carbon and Environmental Management (2021) 422–436. https://doi.org/10.1002/9781119639305.ch24.
  • [11] G.A. Ballut-Dajud, L.C.S. Herazo, G. Fernández-Lambert, J.L. Marín-Muñiz, M.C.L. Méndez, E.A. Betanzo-Torres, Factors Affecting Wetland Loss: A Review, Land 11 (2022) 434. https://doi.org/10.3390/land11030434.
  • [12] S.F. Ahmed, P.S. Kumar, M. Kabir, F.T. Zuhara, A. Mehjabin, N. Tasannum, A.T. Hoang, Z. Kabir, M. Mofijur, Threats, challenges and sustainable conservation strategies for freshwater biodiversity, Environmental Research 214 (2022) 113808. https://doi.org/10.1016/j.envres.2022.113808.
  • [13] A. Çelekli, Ö. Zariç, Utilization of Herbaria in Ecological Studies: Biodiversity and Landscape Monitoring, Herbarium Turcicum 0 (2023) 0–0. https://doi.org/10.26650/ht.2023.1345916.
  • [14] C. Mora, D. Spirandelli, E.C. Franklin, J. Lynham, M.B. Kantar, W. Miles, C.Z. Smith, K. Freel, J. Moy, L. V. Louis, E.W. Barba, K. Bettinger, A.G. Frazier, J.F. Colburn IX, N. Hanasaki, E. Hawkins, Y. Hirabayashi, W. Knorr, C.M. Little, K. Emanuel, J. Sheffield, J.A. Patz, C.L. Hunter, Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions, Nature Climate Change 8 (2018) 1062–1071. https://doi.org/10.1038/s41558-018-0315-6.
  • [15] A. Çelekli, Ö.E. Zariç, From Emissions to Environmental Impact: Understanding the Carbon Footprint, International Journal of Environment and Geoinformatics 10 (2023) 146–156. https://doi.org/10.30897/ijegeo.1383311.
  • [16] A. Çelekli, Ö.E. Zariç, Rising Tide of Ocean Acidification, Environmental Research and Technology (2024). https://doi.org/10.35208/ert.1407588.
  • [17] M. Tweedie, D. Sun, D.R. Gajula, B. Ward, P.D. Maguire, The analysis of dissolved inorganic carbon in liquid using a microfluidic conductivity sensor with membrane separation of CO2, Microfluidics and Nanofluidics 24 (2020). https://doi.org/10.1007/s10404-020-02339-1.
  • [18] A. Çelekli, İ. Yeşildağ, Ö.E. Zariç, Green building future: algal application technology, Journal of Sustainable Construction Materials and Technologies (2024). https://doi.org/10.47481/jscmt.1348260.
  • [19] A. Çelekli, Ö.E. Zariç, Emerging Applications of Plasma Science in Allied Technologies, IGI Global, 2024. https://doi.org/10.4018/979-8-3693-0904-9.
  • [1] Y. Malhi, J. Franklin, N. Seddon, M. Solan, M.G. Turner, C.B. Field, N. Knowlton, Climate change and ecosystems: threats, opportunities and solutions, Philosophical Transactions of the Royal Society B 375 (2020) 20190104.
  • [20] A. Çelekli, Ö.E. Zariç, Breathing life into Mars: Terraforming and the pivotal role of algae in atmospheric genesis, Life Sciences in Space Research 41 (2024) 181–190. https://doi.org/10.1016/j.lssr.2024.03.001.
  • [21] M.H. Arslan, Y. Dere, A.S. Ecemiş, G. Doğan, M. Özturk, S.Z. Korkmaz, Code-based damage assessment of existing precast industrial buildings following the February 6th, 2023 Kahramanmaraş earthquakes (Pazarcık Mw 7.7 and Elbistan Mw7.6), Journal of Building Engineering 86 (2024) 108811. https://doi.org/10.1016/j.jobe.2024.108811.
  • [22] A.E. Dinçer, N.N. Dincer, A. Tekin-Koru, B. Yaşar, Z. Yılmaz, The impact of Kahramanmaraş (2023) earthquakes: A comparative case study for Adıyaman and Malatya, International Journal of Disaster Risk Reduction 110 (2024) 104647. https://doi.org/10.1016/j.ijdrr.2024.104647.
  • [23] NASA, POWER | DAVe, (2024).
  • [24] Climate Data, Climate data for cities worldwide - Climate-Data.org, AmbiWeb GmbH (2024)
  • [25] Tutiempo, World Weather - Local Weather Forecast, (2024).
  • [26] TURKSTAT, Turkstat Data Portal For Statistics, (2024).
  • [27] European Environment Agency, CORINE Land Cover - User Manual, Copernicus Land Monitoring Service 1.0 (2021) 128.
  • [28] G. Bedogni, A Beginner's Guide to R, Springer, 2010. https://doi.org/10.1111/j.1467-985x.2010.00646_12.x.
  • [29] B. Ishak, Statistics, data mining, and machine learning in astronomy: a practical Python guide for the analysis of survey data, by Željko Ivezić, Andrew J. Connolly, Jacob T. VanderPlas and Alexander Gray, Princeton University Press, 2017. https://doi.org/10.1080/00107514.2016.1246478.
  • [2] S. Salimi, S.A.A.A.N. Almuktar, M. Scholz, Impact of climate change on wetland ecosystems: A critical review of experimental wetlands, Journal of Environmental Management 286 (2021) 112160. https://doi.org/10.1016/j.jenvman.2021.112160.
  • [30] J.F.C. ter Braak, P. Šmilauer, Canoco reference manual and CanoDraw for Windows user´s guide, www. canoco. com, 2002.
  • [31] L.R. Izquierdo, S.S. Izquierdo, J.M. Galán, J.I. Santos, Techniques to understand computer simulations: Markov chain analysis, Jasss 12 (2009) 6.
  • [32] M.B. Baettig, M. Wild, D.M. Imboden, Erratum: "A climate change index: Where climate change may be most prominent in the 21st century" (Geophysical Research Letters (2007) vol. 34 10.1029/2006GL028159), Geophysical Research Letters 34 (2007). https://doi.org/10.1029/2007GL031628
  • [3] D. Hayala, L. Brook, F. Arande, Aspects of climate change and its associated impacts on wetland ecosystem functions - A review, Journal of American Science 8 (2012) 54–58
  • [4] E. Şeren, A. Çelekli, Biodiversity Loss: A Global Issue Threatening Ecological Balance, (2024).
  • [5] R. Lal, J. Stone, J. Bhatti, Impacts of Climate Change on Agriculture, Forest, and Wetland Ecosystems, Climate Change and Managed Ecosystems 7 (2005) 399–409. https://doi.org/10.1201/9781420037791.ch20.
  • [6] M. Scholz, Wetlands for Water Pollution Control, Elsevier, 2023. https://doi.org/10.1016/C2022-0-02985-8.
  • [7] Wahied Khawar Balwan, S. Kour, Wetland- An Ecological Boon for the Environment, East African Scholars Journal of Agriculture and Life Sciences 4 (2021) 38–48. https://doi.org/10.36349/easjals.2021.v04i03.001.
  • [8] Ö.E. Zariç, A. Çelekli, S. Yaygır, Lakes of Turkey: Comprehensive Review of Lake Çıldır, Aquatic Sciences and Engineering 39 (2024) 54–63. https://doi.org/10.26650/ASE20241353730.
  • [9] A. Çelekli, S. Yaygır, Ö.E. Zariç, Lakes of Turkey: Comprehensive Review of Lake Abant, Acta Aquatica Turcica 19 (2023) 368–380. https://doi.org/10.22392/actaquatr.1272430.
44
21
görüntülenme
indirilme
Tüm sürümler Bu sürüm
Görüntülenme 4434
İndirme 2121
Veri hacmi 25.6 MB25.6 MB
Tekil görüntülenme 3629
Tekil indirme 1818

Alıntı yap