Dergi makalesi Açık Erişim

RANDOM POLYNOMIALS IN SEVERAL COMPLEX VARIABLES

Bayraktar, Turgay; Bloom, Thomas; Levenberg, Norm


MARC21 XML

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield>
    <subfield code="o">oai:aperta.ulakbim.gov.tr:270930</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;We generalize some previous results on random polynomials in several complex variables. A standard setting is to consider random polynomials H-n(z) := Sigma(mn)(j=1) a(j)p(j)(z) that are linear combinations of basis polynomials {p(j)} with i.i.d. complex random variable coefficients {a(j)} where {p(j)} form an orthonormal basis for a Bernstein-Markov measure on a compact set K subset of C-d. Here mn is the dimension of P-n, the holomorphic polynomials of degree at most n in C-d. We consider more general bases {p(j)}, which include, e.g., higher-dimensional generalizations of Fekete polynomials. Moreover we allow H-n(z) := Sigma(mn)(j=1) a(nj)p(nj)(z), i.e., we have an array of basis polynomials {p(nj)} and random coefficients {a(nj)}. This always occurs in a weighted situation. We prove results on convergence in probability and on almost sure convergence of 1/n log vertical bar H-n vertical bar in L-loc(1)(C-d) to the (weighted) extremal plurisubharmonic function for K. We aim for weakest possible sufficient conditions on the random coefficients to guarantee convergence.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="a">Creative Commons Attribution</subfield>
    <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Bayraktar, Turgay</subfield>
    <subfield code="u">Sabanci Univ, Fac Engn &amp; Nat Sci, TR-34956 Tuzla, Istanbul, Turkiye</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="z">md5:8f63025797bd19f64b569d898c8e96d6</subfield>
    <subfield code="s">137</subfield>
    <subfield code="u">https://aperta.ulakbim.gov.trrecord/270930/files/bib-48094354-820b-4216-ad89-c2ed7456436e.txt</subfield>
  </datafield>
  <controlfield tag="005">20240607161858.0</controlfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2023-01-01</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1007/s11854-023-0316-x</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">RANDOM POLYNOMIALS IN SEVERAL COMPLEX VARIABLES</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">27</subfield>
    <subfield code="p">JOURNAL D ANALYSE MATHEMATIQUE</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Bloom, Thomas</subfield>
    <subfield code="u">Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Levenberg, Norm</subfield>
    <subfield code="u">Indiana Univ, Dept Math, Bloomington, IN 47405 USA</subfield>
  </datafield>
  <controlfield tag="001">270930</controlfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
</record>
0
1
görüntülenme
indirilme
Görüntülenme 0
İndirme 1
Veri hacmi 137 Bytes
Tekil görüntülenme 0
Tekil indirme 1

Alıntı yap