Dergi makalesi Açık Erişim
Bayraktar, Turgay; Bloom, Thomas; Levenberg, Norm
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/270930</identifier>
<creators>
<creator>
<creatorName>Bayraktar, Turgay</creatorName>
<givenName>Turgay</givenName>
<familyName>Bayraktar</familyName>
<affiliation>Sabanci Univ, Fac Engn & Nat Sci, TR-34956 Tuzla, Istanbul, Turkiye</affiliation>
</creator>
<creator>
<creatorName>Bloom, Thomas</creatorName>
<givenName>Thomas</givenName>
<familyName>Bloom</familyName>
<affiliation>Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada</affiliation>
</creator>
<creator>
<creatorName>Levenberg, Norm</creatorName>
<givenName>Norm</givenName>
<familyName>Levenberg</familyName>
<affiliation>Indiana Univ, Dept Math, Bloomington, IN 47405 USA</affiliation>
</creator>
</creators>
<titles>
<title>Random Polynomials In Several Complex Variables</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2023</publicationYear>
<dates>
<date dateType="Issued">2023-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/270930</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1007/s11854-023-0316-x</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract"><p>We generalize some previous results on random polynomials in several complex variables. A standard setting is to consider random polynomials H-n(z) := Sigma(mn)(j=1) a(j)p(j)(z) that are linear combinations of basis polynomials {p(j)} with i.i.d. complex random variable coefficients {a(j)} where {p(j)} form an orthonormal basis for a Bernstein-Markov measure on a compact set K subset of C-d. Here mn is the dimension of P-n, the holomorphic polynomials of degree at most n in C-d. We consider more general bases {p(j)}, which include, e.g., higher-dimensional generalizations of Fekete polynomials. Moreover we allow H-n(z) := Sigma(mn)(j=1) a(nj)p(nj)(z), i.e., we have an array of basis polynomials {p(nj)} and random coefficients {a(nj)}. This always occurs in a weighted situation. We prove results on convergence in probability and on almost sure convergence of 1/n log vertical bar H-n vertical bar in L-loc(1)(C-d) to the (weighted) extremal plurisubharmonic function for K. We aim for weakest possible sufficient conditions on the random coefficients to guarantee convergence.</p></description>
</descriptions>
</resource>
| Görüntülenme | 0 |
| İndirme | 1 |
| Veri hacmi | 137 Bytes |
| Tekil görüntülenme | 0 |
| Tekil indirme | 1 |