Dergi makalesi Açık Erişim

Gas phase Elemental abundances in Molecular cloudS (GEMS) VIII. Unlocking the CS chemistry: The CH plus S → CS + H and C<sub>2</sub> + S → CS plus C reactions

Rocha, Carlos M. R.; Roncero, Octavio; Bulut, Niyazi; Zuchowski, Piotr; Navarro-Almaida, David; Fuente, Asuncion; Wakelam, Valentine; Loison, Jean-Christophe; Roueff, Evelyne; Goicoechea, Javier R.; Esplugues, Gisela; Beitia-Antero, Leire; Caselli, Paola; Lattanzi, Valerio; Pineda, Jaime; Le Gal, Romane; Rodriguez-Baras, Marina; Riviere-Marichalar, Pablo


MARC21 XML

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Roncero, Octavio</subfield>
    <subfield code="u">CSIC, Inst Fis Fundamental IFF, Serrano 123, Madrid 28006, Spain</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Bulut, Niyazi</subfield>
    <subfield code="u">Firat Univ, Dept Phys, TR-23169 Elazig, Turkiye</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Zuchowski, Piotr</subfield>
    <subfield code="u">Nicolaus Copernicus Univ Torun, Inst Phys, Fac Phys Astron &amp; Informat, Grudziadzka 5, PL-87100 Torun, Poland</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Navarro-Almaida, David</subfield>
    <subfield code="u">Univ Paris Saclay, Dept Astrophys DAp, CEA, AIM, F-91191 Gif Sur Yvette, France</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Fuente, Asuncion</subfield>
    <subfield code="u">Observ Astron Nacl IGN, C Alfonso XII 2, Madrid 28014, Spain</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Wakelam, Valentine</subfield>
    <subfield code="u">Univ Bordeaux, Lab Astrophys Bordeaux, B18N, CNRS, Allee Geoffroy St Hilaire, F-33615 Pessac, France</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Loison, Jean-Christophe</subfield>
    <subfield code="u">Univ Bordeaux, Inst Sci Mol ISM, CNRS, 351 Cours Liberat, F-33400 Talence, France</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Roueff, Evelyne</subfield>
    <subfield code="u">Sorbonne Univ, Observ Paris, Univ PSL, CNRS,LERMA, F-92190 Meudon, France</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Goicoechea, Javier R.</subfield>
    <subfield code="u">CSIC, Inst Fis Fundamental IFF, Serrano 123, Madrid 28006, Spain</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Esplugues, Gisela</subfield>
    <subfield code="u">Observ Astron Nacl IGN, C Alfonso XII 2, Madrid 28014, Spain</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Beitia-Antero, Leire</subfield>
    <subfield code="u">Observ Astron Nacl IGN, C Alfonso XII 2, Madrid 28014, Spain</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Caselli, Paola</subfield>
    <subfield code="u">Max Planck Inst Extraterr Phys, Ctr Astrochem Studies, Giessenbachstr 1, D-85748 Garching, Germany</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Lattanzi, Valerio</subfield>
    <subfield code="u">Max Planck Inst Extraterr Phys, Ctr Astrochem Studies, Giessenbachstr 1, D-85748 Garching, Germany</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Pineda, Jaime</subfield>
    <subfield code="u">Max Planck Inst Extraterr Phys, Ctr Astrochem Studies, Giessenbachstr 1, D-85748 Garching, Germany</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Le Gal, Romane</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Rodriguez-Baras, Marina</subfield>
    <subfield code="u">Observ Astron Nacl IGN, C Alfonso XII 2, Madrid 28014, Spain</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Riviere-Marichalar, Pablo</subfield>
    <subfield code="u">Observ Astron Nacl IGN, C Alfonso XII 2, Madrid 28014, Spain</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">13</subfield>
    <subfield code="p">ASTRONOMY &amp; ASTROPHYSICS</subfield>
    <subfield code="v">677</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="a">Creative Commons Attribution</subfield>
    <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1051/0004-6361/202346967</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Gas phase Elemental abundances in Molecular cloudS (GEMS) VIII. Unlocking the CS chemistry: The CH plus S → CS + H and C&lt;sub&gt;2&lt;/sub&gt; + S → CS plus C reactions</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Rocha, Carlos M. R.</subfield>
    <subfield code="u">Leiden Univ, Lab Astrophys, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:aperta.ulakbim.gov.tr:270264</subfield>
    <subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="2">opendefinition.org</subfield>
    <subfield code="a">cc-by</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2023-01-01</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="u">https://aperta.ulakbim.gov.trrecord/270264/files/bib-4f2fae07-243a-4ade-8e4f-df6b775ba1a0.txt</subfield>
    <subfield code="z">md5:a44c8d97bfc662267bab55f5ea225f31</subfield>
    <subfield code="s">484</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <controlfield tag="005">20240607154509.0</controlfield>
  <controlfield tag="001">270264</controlfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Context. Carbon monosulphide (CS) is among the few sulphur-bearing species that have been widely observed in all environments, including in the most extreme, such as diffuse clouds. Moreover, CS has been widely used as a tracer of the gas density in the interstellar medium in our Galaxy and external galaxies. Therefore, a complete understanding of its chemistry in all environments is of paramount importance for the study of interstellar matter.&lt;/p&gt;
&lt;p&gt;Aims. Our group is revising the rates of the main formation and destruction mechanisms of CS. In particular, we focus on those involving open-shell species for which the classical capture model might not be sufficiently accurate. In this paper, we revise the rates of reactions CH + S -&amp;gt; CS + H and C-2 + S -&amp;gt; CS + C. These reactions are important CS formation routes in some environments such as dark and diffuse warm gas.&lt;/p&gt;
&lt;p&gt;Methods. We performed ab initio calculations to characterize the main features of all the electronic states correlating to the open shell reactants. For CH+S, we calculated the full potential energy surfaces (PESs) for the lowest doublet states and the reaction rate constant with a quasi-classical method. For C-2+S, the reaction can only take place through the three lower triplet states, which all present deep insertion wells. A detailed study of the long-range interactions for these triplet states allowed us to apply a statistic adiabatic method to determine the rate constants.&lt;/p&gt;
&lt;p&gt;Results. Our detailed theoretical study of the CH + S -&amp;gt; CS + H reaction shows that its rate is nearly independent of the temperature in a range of 10-500 K, with an almost constant value of 5.5 x 10(-11) cm(3) s(-1) at temperatures above 100 K. This is a factor of about 2-3 lower than the value obtained with the capture model. The rate of the reaction C-2 + S -&amp;gt; CS + C does depend on the temperature, and takes values close to 2.0 x 10(-10) cm(3) s-(1) at low temperatures, which increase to similar to 5.0 x 10(-10) cm(3) s(-1) for temperatures higher than 200 K. In this case, our detailed modeling - taking into account the electronic and spin states - provides a rate that is higher than the one currently used by factor of approximately 2.&lt;/p&gt;
&lt;p&gt;Conclusions. These reactions were selected based on their inclusion of open-shell species with many degenerate electronic states, and, unexpectedly, the results obtained in the present detailed calculations provide values that differ by a factor of about 2-3 from the simpler classical capture method. We updated the sulphur network with these new rates and compare our results in the prototypical case of TMC1 (CP). We find a reasonable agreement between model predictions and observations with a sulphur depletion factor of 20 relative to the sulphur cosmic abundance. However, it is not possible to fit the abundances of all sulphur-bearing molecules better than a factor of 10 at the same chemical time.&lt;/p&gt;</subfield>
  </datafield>
</record>
21
0
görüntülenme
indirilme
Görüntülenme 21
İndirme 0
Veri hacmi 0 Bytes
Tekil görüntülenme 21
Tekil indirme 0

Alıntı yap