Dergi makalesi Açık Erişim

Gas phase Elemental abundances in Molecular cloudS (GEMS) VIII. Unlocking the CS chemistry: The CH plus S → CS + H and C<sub>2</sub> + S → CS plus C reactions

Rocha, Carlos M. R.; Roncero, Octavio; Bulut, Niyazi; Zuchowski, Piotr; Navarro-Almaida, David; Fuente, Asuncion; Wakelam, Valentine; Loison, Jean-Christophe; Roueff, Evelyne; Goicoechea, Javier R.; Esplugues, Gisela; Beitia-Antero, Leire; Caselli, Paola; Lattanzi, Valerio; Pineda, Jaime; Le Gal, Romane; Rodriguez-Baras, Marina; Riviere-Marichalar, Pablo


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/270264</identifier>
  <creators>
    <creator>
      <creatorName>Rocha, Carlos M. R.</creatorName>
      <givenName>Carlos M. R.</givenName>
      <familyName>Rocha</familyName>
      <affiliation>Leiden Univ, Lab Astrophys, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands</affiliation>
    </creator>
    <creator>
      <creatorName>Roncero, Octavio</creatorName>
      <givenName>Octavio</givenName>
      <familyName>Roncero</familyName>
      <affiliation>CSIC, Inst Fis Fundamental IFF, Serrano 123, Madrid 28006, Spain</affiliation>
    </creator>
    <creator>
      <creatorName>Bulut, Niyazi</creatorName>
      <givenName>Niyazi</givenName>
      <familyName>Bulut</familyName>
      <affiliation>Firat Univ, Dept Phys, TR-23169 Elazig, Turkiye</affiliation>
    </creator>
    <creator>
      <creatorName>Zuchowski, Piotr</creatorName>
      <givenName>Piotr</givenName>
      <familyName>Zuchowski</familyName>
      <affiliation>Nicolaus Copernicus Univ Torun, Inst Phys, Fac Phys Astron &amp; Informat, Grudziadzka 5, PL-87100 Torun, Poland</affiliation>
    </creator>
    <creator>
      <creatorName>Navarro-Almaida, David</creatorName>
      <givenName>David</givenName>
      <familyName>Navarro-Almaida</familyName>
      <affiliation>Univ Paris Saclay, Dept Astrophys DAp, CEA, AIM, F-91191 Gif Sur Yvette, France</affiliation>
    </creator>
    <creator>
      <creatorName>Fuente, Asuncion</creatorName>
      <givenName>Asuncion</givenName>
      <familyName>Fuente</familyName>
      <affiliation>Observ Astron Nacl IGN, C Alfonso XII 2, Madrid 28014, Spain</affiliation>
    </creator>
    <creator>
      <creatorName>Wakelam, Valentine</creatorName>
      <givenName>Valentine</givenName>
      <familyName>Wakelam</familyName>
      <affiliation>Univ Bordeaux, Lab Astrophys Bordeaux, B18N, CNRS, Allee Geoffroy St Hilaire, F-33615 Pessac, France</affiliation>
    </creator>
    <creator>
      <creatorName>Loison, Jean-Christophe</creatorName>
      <givenName>Jean-Christophe</givenName>
      <familyName>Loison</familyName>
      <affiliation>Univ Bordeaux, Inst Sci Mol ISM, CNRS, 351 Cours Liberat, F-33400 Talence, France</affiliation>
    </creator>
    <creator>
      <creatorName>Roueff, Evelyne</creatorName>
      <givenName>Evelyne</givenName>
      <familyName>Roueff</familyName>
      <affiliation>Sorbonne Univ, Observ Paris, Univ PSL, CNRS,LERMA, F-92190 Meudon, France</affiliation>
    </creator>
    <creator>
      <creatorName>Goicoechea, Javier R.</creatorName>
      <givenName>Javier R.</givenName>
      <familyName>Goicoechea</familyName>
      <affiliation>CSIC, Inst Fis Fundamental IFF, Serrano 123, Madrid 28006, Spain</affiliation>
    </creator>
    <creator>
      <creatorName>Esplugues, Gisela</creatorName>
      <givenName>Gisela</givenName>
      <familyName>Esplugues</familyName>
      <affiliation>Observ Astron Nacl IGN, C Alfonso XII 2, Madrid 28014, Spain</affiliation>
    </creator>
    <creator>
      <creatorName>Beitia-Antero, Leire</creatorName>
      <givenName>Leire</givenName>
      <familyName>Beitia-Antero</familyName>
      <affiliation>Observ Astron Nacl IGN, C Alfonso XII 2, Madrid 28014, Spain</affiliation>
    </creator>
    <creator>
      <creatorName>Caselli, Paola</creatorName>
      <givenName>Paola</givenName>
      <familyName>Caselli</familyName>
      <affiliation>Max Planck Inst Extraterr Phys, Ctr Astrochem Studies, Giessenbachstr 1, D-85748 Garching, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Lattanzi, Valerio</creatorName>
      <givenName>Valerio</givenName>
      <familyName>Lattanzi</familyName>
      <affiliation>Max Planck Inst Extraterr Phys, Ctr Astrochem Studies, Giessenbachstr 1, D-85748 Garching, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Pineda, Jaime</creatorName>
      <givenName>Jaime</givenName>
      <familyName>Pineda</familyName>
      <affiliation>Max Planck Inst Extraterr Phys, Ctr Astrochem Studies, Giessenbachstr 1, D-85748 Garching, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Le Gal, Romane</creatorName>
      <givenName>Romane</givenName>
      <familyName>Le Gal</familyName>
    </creator>
    <creator>
      <creatorName>Rodriguez-Baras, Marina</creatorName>
      <givenName>Marina</givenName>
      <familyName>Rodriguez-Baras</familyName>
      <affiliation>Observ Astron Nacl IGN, C Alfonso XII 2, Madrid 28014, Spain</affiliation>
    </creator>
    <creator>
      <creatorName>Riviere-Marichalar, Pablo</creatorName>
      <givenName>Pablo</givenName>
      <familyName>Riviere-Marichalar</familyName>
      <affiliation>Observ Astron Nacl IGN, C Alfonso XII 2, Madrid 28014, Spain</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Gas Phase Elemental Abundances In Molecular Clouds (Gems) Viii. Unlocking The Cs Chemistry: The Ch Plus S → Cs + H And C&lt;Sub&gt;2&lt;/Sub&gt; + S → Cs Plus C Reactions</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2023</publicationYear>
  <dates>
    <date dateType="Issued">2023-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/270264</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1051/0004-6361/202346967</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Context. Carbon monosulphide (CS) is among the few sulphur-bearing species that have been widely observed in all environments, including in the most extreme, such as diffuse clouds. Moreover, CS has been widely used as a tracer of the gas density in the interstellar medium in our Galaxy and external galaxies. Therefore, a complete understanding of its chemistry in all environments is of paramount importance for the study of interstellar matter.&lt;/p&gt;
&lt;p&gt;Aims. Our group is revising the rates of the main formation and destruction mechanisms of CS. In particular, we focus on those involving open-shell species for which the classical capture model might not be sufficiently accurate. In this paper, we revise the rates of reactions CH + S -&amp;gt; CS + H and C-2 + S -&amp;gt; CS + C. These reactions are important CS formation routes in some environments such as dark and diffuse warm gas.&lt;/p&gt;
&lt;p&gt;Methods. We performed ab initio calculations to characterize the main features of all the electronic states correlating to the open shell reactants. For CH+S, we calculated the full potential energy surfaces (PESs) for the lowest doublet states and the reaction rate constant with a quasi-classical method. For C-2+S, the reaction can only take place through the three lower triplet states, which all present deep insertion wells. A detailed study of the long-range interactions for these triplet states allowed us to apply a statistic adiabatic method to determine the rate constants.&lt;/p&gt;
&lt;p&gt;Results. Our detailed theoretical study of the CH + S -&amp;gt; CS + H reaction shows that its rate is nearly independent of the temperature in a range of 10-500 K, with an almost constant value of 5.5 x 10(-11) cm(3) s(-1) at temperatures above 100 K. This is a factor of about 2-3 lower than the value obtained with the capture model. The rate of the reaction C-2 + S -&amp;gt; CS + C does depend on the temperature, and takes values close to 2.0 x 10(-10) cm(3) s-(1) at low temperatures, which increase to similar to 5.0 x 10(-10) cm(3) s(-1) for temperatures higher than 200 K. In this case, our detailed modeling - taking into account the electronic and spin states - provides a rate that is higher than the one currently used by factor of approximately 2.&lt;/p&gt;
&lt;p&gt;Conclusions. These reactions were selected based on their inclusion of open-shell species with many degenerate electronic states, and, unexpectedly, the results obtained in the present detailed calculations provide values that differ by a factor of about 2-3 from the simpler classical capture method. We updated the sulphur network with these new rates and compare our results in the prototypical case of TMC1 (CP). We find a reasonable agreement between model predictions and observations with a sulphur depletion factor of 20 relative to the sulphur cosmic abundance. However, it is not possible to fit the abundances of all sulphur-bearing molecules better than a factor of 10 at the same chemical time.&lt;/p&gt;</description>
  </descriptions>
</resource>
21
0
görüntülenme
indirilme
Görüntülenme 21
İndirme 0
Veri hacmi 0 Bytes
Tekil görüntülenme 21
Tekil indirme 0

Alıntı yap