Dergi makalesi Açık Erişim
Baysal, Onur; Hasanov, Alemdar; Kumarasamy, Sakthivel
{
"conceptrecid": "270119",
"created": "2024-06-07T15:39:49.740482+00:00",
"doi": "10.1515/jiip-2023-0021",
"files": [
{
"bucket": "76aa3272-95d0-4305-b23f-428278991269",
"checksum": "md5:cc447945a6ef93aa842fc07e2283dea3",
"key": "bib-09eece1b-0a22-4409-8b65-a091943e6531.txt",
"links": {
"self": "https://aperta.ulakbim.gov.tr/api/files/76aa3272-95d0-4305-b23f-428278991269/bib-09eece1b-0a22-4409-8b65-a091943e6531.txt"
},
"size": 201,
"type": "txt"
}
],
"id": 270120,
"links": {
"badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.1515/jiip-2023-0021.svg",
"bucket": "https://aperta.ulakbim.gov.tr/api/files/76aa3272-95d0-4305-b23f-428278991269",
"doi": "https://doi.org/10.1515/jiip-2023-0021",
"html": "https://aperta.ulakbim.gov.tr/record/270120",
"latest": "https://aperta.ulakbim.gov.tr/api/records/270120",
"latest_html": "https://aperta.ulakbim.gov.tr/record/270120"
},
"metadata": {
"access_right": "open",
"access_right_category": "success",
"communities": [
{
"id": "tubitak-destekli-proje-yayinlari"
}
],
"creators": [
{
"affiliation": "Univ Malta, Dept Math, Msida, Malta",
"name": "Baysal, Onur"
},
{
"affiliation": "Kocaeli Univ, Dept Math, Altunsehir Str,Ayazma Villalari,22 Bahcecik Basisk, TR-41030 Izmit, Kocaeli, Turkiye",
"name": "Hasanov, Alemdar"
},
{
"affiliation": "Indian Inst Space Sci & Technol IIST, Dept Math, Trivandrum, India",
"name": "Kumarasamy, Sakthivel"
}
],
"description": "<p>In this paper, we present a new methodology, based on the inverse problem approach, for the determination of an unknown shear force acting on the inaccessible tip of the microcantilever, which is a key component of transverse dynamic force microscopy (TDFM). The mathematical modelling of this phenomenon leads to the inverse problem of determining the shear force g(t) acting on the inaccessible boundary x = l in a system governed by the variable coefficient Euler-Bernoulli equation</p>\n<p>r(A)(x)u(tt) + mu(x)u(t) + (r(x)u(xx) + kappa(x)u(xxt))(xx) = 0, (x, t) is an element of (0, l) x (0, T),</p>\n<p>subject to the homogeneous initial conditions and the boundary conditions</p>\n<p>u(0, t) = u(0)(t), u(x)(0, t) = 0, (u(xx)(x, t) + kappa(x)u(xxt))(x=l) = 0, (-(r(x)u(xx) + kappa(x)u(xxt))x)(x=l) = g(t),</p>\n<p>from the final time measured output (displacement) u(T) (x) := u( x, T). We introduce the input-output map (Phi g)(x) := u( x, T; g), g is an element of G, and prove that it is a compact and Lipschitz continuous linear operator. Then we introduce the Tikhonov functional</p>\n<p>J(F) = 1/2 parallel to Phi g - u(T)parallel to(2)(L2(0,l))</p>\n<p>and prove the existence of a quasi-solution of the inverse problem. We derive a gradient formula for the Frechet gradient of the Tikhonov functional through the corresponding adjoint problem solution and prove that it is a Lipschitz continuous functional. The results of the numerical experiments clearly illustrate the effectiveness and feasibility of the proposed approach.</p>",
"doi": "10.1515/jiip-2023-0021",
"has_grant": false,
"journal": {
"pages": "18",
"title": "JOURNAL OF INVERSE AND ILL-POSED PROBLEMS"
},
"license": {
"id": "cc-by"
},
"publication_date": "2023-01-01",
"relations": {
"version": [
{
"count": 1,
"index": 0,
"is_last": true,
"last_child": {
"pid_type": "recid",
"pid_value": "270120"
},
"parent": {
"pid_type": "recid",
"pid_value": "270119"
}
}
]
},
"resource_type": {
"subtype": "article",
"title": "Dergi makalesi",
"type": "publication"
},
"science_branches": [
"Di\u011fer"
],
"title": "Determination of unknown shear force in transverse dynamic force microscopy from measured final data"
},
"owners": [
1
],
"revision": 1,
"stats": {
"downloads": 3.0,
"unique_downloads": 3.0,
"unique_views": 25.0,
"version_downloads": 3.0,
"version_unique_downloads": 3.0,
"version_unique_views": 20.0,
"version_views": 22.0,
"version_volume": 603.0,
"views": 28.0,
"volume": 603.0
},
"updated": "2024-06-07T15:39:49.780674+00:00"
}
| Görüntülenme | 28 |
| İndirme | 3 |
| Veri hacmi | 603 Bytes |
| Tekil görüntülenme | 25 |
| Tekil indirme | 3 |