Dergi makalesi Açık Erişim
Baysal, Onur; Hasanov, Alemdar; Kumarasamy, Sakthivel
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/270120</identifier>
<creators>
<creator>
<creatorName>Baysal, Onur</creatorName>
<givenName>Onur</givenName>
<familyName>Baysal</familyName>
<affiliation>Univ Malta, Dept Math, Msida, Malta</affiliation>
</creator>
<creator>
<creatorName>Hasanov, Alemdar</creatorName>
<givenName>Alemdar</givenName>
<familyName>Hasanov</familyName>
<affiliation>Kocaeli Univ, Dept Math, Altunsehir Str,Ayazma Villalari,22 Bahcecik Basisk, TR-41030 Izmit, Kocaeli, Turkiye</affiliation>
</creator>
<creator>
<creatorName>Kumarasamy, Sakthivel</creatorName>
<givenName>Sakthivel</givenName>
<familyName>Kumarasamy</familyName>
<affiliation>Indian Inst Space Sci & Technol IIST, Dept Math, Trivandrum, India</affiliation>
</creator>
</creators>
<titles>
<title>Determination Of Unknown Shear Force In Transverse Dynamic Force Microscopy From Measured Final Data</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2023</publicationYear>
<dates>
<date dateType="Issued">2023-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/270120</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1515/jiip-2023-0021</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract"><p>In this paper, we present a new methodology, based on the inverse problem approach, for the determination of an unknown shear force acting on the inaccessible tip of the microcantilever, which is a key component of transverse dynamic force microscopy (TDFM). The mathematical modelling of this phenomenon leads to the inverse problem of determining the shear force g(t) acting on the inaccessible boundary x = l in a system governed by the variable coefficient Euler-Bernoulli equation</p>
<p>r(A)(x)u(tt) + mu(x)u(t) + (r(x)u(xx) + kappa(x)u(xxt))(xx) = 0, (x, t) is an element of (0, l) x (0, T),</p>
<p>subject to the homogeneous initial conditions and the boundary conditions</p>
<p>u(0, t) = u(0)(t), u(x)(0, t) = 0, (u(xx)(x, t) + kappa(x)u(xxt))(x=l) = 0, (-(r(x)u(xx) + kappa(x)u(xxt))x)(x=l) = g(t),</p>
<p>from the final time measured output (displacement) u(T) (x) := u( x, T). We introduce the input-output map (Phi g)(x) := u( x, T; g), g is an element of G, and prove that it is a compact and Lipschitz continuous linear operator. Then we introduce the Tikhonov functional</p>
<p>J(F) = 1/2 parallel to Phi g - u(T)parallel to(2)(L2(0,l))</p>
<p>and prove the existence of a quasi-solution of the inverse problem. We derive a gradient formula for the Frechet gradient of the Tikhonov functional through the corresponding adjoint problem solution and prove that it is a Lipschitz continuous functional. The results of the numerical experiments clearly illustrate the effectiveness and feasibility of the proposed approach.</p></description>
</descriptions>
</resource>
| Görüntülenme | 28 |
| İndirme | 3 |
| Veri hacmi | 603 Bytes |
| Tekil görüntülenme | 25 |
| Tekil indirme | 3 |