Dergi makalesi Açık Erişim

Hydrothermally Derived Green Carbon Dots from Broccoli Water Extracts: Decreased Toxicity, Enhanced Free-Radical Scavenging, and Anti-Inflammatory Performance

Deng, Wen-wen; Zang, Chuan-ru; Li, Qiu-chen; Sun, Bo; Mei, Xue-ping; Bai, Lu; Shang, Xin-miao; Deng, Ying; Xiao, Ya-qian; Ghiladi, Reza A.; Lorimer, George H.; Zhang, Xue-ji; Wang, Jun


JSON-LD (schema.org)

{
  "@context": "https://schema.org/", 
  "@id": 268076, 
  "@type": "ScholarlyArticle", 
  "creator": [
    {
      "@type": "Person", 
      "affiliation": "Hubei Univ Technol, Autism & Depress Diag & Intervent Inst, Natl Ctr Cellular Regulat & Mol Pharmaceut 111, Wuhan 430068, Hubei, Peoples R China", 
      "name": "Deng, Wen-wen"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Hubei Univ Technol, Autism & Depress Diag & Intervent Inst, Natl Ctr Cellular Regulat & Mol Pharmaceut 111, Wuhan 430068, Hubei, Peoples R China", 
      "name": "Zang, Chuan-ru"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Hubei Univ Technol, Autism & Depress Diag & Intervent Inst, Natl Ctr Cellular Regulat & Mol Pharmaceut 111, Wuhan 430068, Hubei, Peoples R China", 
      "name": "Li, Qiu-chen"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Hubei Univ Technol, Autism & Depress Diag & Intervent Inst, Natl Ctr Cellular Regulat & Mol Pharmaceut 111, Wuhan 430068, Hubei, Peoples R China", 
      "name": "Sun, Bo"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Hubei Univ Technol, Autism & Depress Diag & Intervent Inst, Natl Ctr Cellular Regulat & Mol Pharmaceut 111, Wuhan 430068, Hubei, Peoples R China", 
      "name": "Mei, Xue-ping"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Hubei Univ Technol, Autism & Depress Diag & Intervent Inst, Natl Ctr Cellular Regulat & Mol Pharmaceut 111, Wuhan 430068, Hubei, Peoples R China", 
      "name": "Bai, Lu"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Hubei Univ Technol, Autism & Depress Diag & Intervent Inst, Natl Ctr Cellular Regulat & Mol Pharmaceut 111, Wuhan 430068, Hubei, Peoples R China", 
      "name": "Shang, Xin-miao"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Hubei Univ Technol, Autism & Depress Diag & Intervent Inst, Natl Ctr Cellular Regulat & Mol Pharmaceut 111, Wuhan 430068, Hubei, Peoples R China", 
      "name": "Deng, Ying"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Hubei Univ Technol, Autism & Depress Diag & Intervent Inst, Natl Ctr Cellular Regulat & Mol Pharmaceut 111, Wuhan 430068, Hubei, Peoples R China", 
      "name": "Xiao, Ya-qian"
    }, 
    {
      "@type": "Person", 
      "affiliation": "North Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA", 
      "name": "Ghiladi, Reza A."
    }, 
    {
      "@type": "Person", 
      "affiliation": "Univ Maryland, Dept Chem, College Pk, MD 20742 USA", 
      "name": "Lorimer, George H."
    }, 
    {
      "@type": "Person", 
      "affiliation": "Shenzhen Univ, Sch Biomed Engn, Guangzhou 518060, Peoples R China", 
      "name": "Zhang, Xue-ji"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Hubei Univ Technol, Autism & Depress Diag & Intervent Inst, Natl Ctr Cellular Regulat & Mol Pharmaceut 111, Wuhan 430068, Hubei, Peoples R China", 
      "name": "Wang, Jun"
    }
  ], 
  "datePublished": "2023-01-01", 
  "description": "<p>Biomass carbon dots (CDs) derived from natural plants possess the advantages of low cost, photostability, and excellent biocompatibility, with potential applications in chemical sensing, bioimaging, and nanomedicine. However, the development of biomass CDs with excellent antioxidant activity and good biocompatibility is still a challenge. Herein, we propose a hypothesis for enhancing the antioxidant capacity of biomass CDs based on precursor optimization, extraction solvent, and other conditions with broccoli as the biomass. Compared to broccoli water extracts, broccoli powders, and broccoli organic solvent extracts, CDs derived from broccoli water extracts (BWE-CDs) have outstanding antioxidant properties due to the abundant C=C, carbonyl, and amino groups on their surface. After optimization of the preparation condition, the obtained BWE-CDs exhibit excellent free-radical scavenging activity with an EC50 of 68.2 mu g/mL for DPPH center dot and 22.4 mu g/mL for ABTS(center dot+). Cytotoxicity and zebrafish embryotoxicity results indicated that BWE-CDs have lower cytotoxicity and better biocompatibility than that of CDs derived from organic solvents. In addition, BWE-CDs effectively scavenged reactive oxygen species (ROS) in A549 cells, 293T cells, and zebrafish, as well as eliminating inflammation in LPS-stimulated zebrafish. Mechanistic studies showed that the anti-inflammatory effect of BWE-CDs was dependent on the direct reaction of CDs with free radicals, the regulation of NO levels, and the upregulation of the expression of SOD and GPX-4. This work indicates that the antioxidant activity of CDs could be enhanced by using solvent extracts of biomass as precursors, and the obtained BWE-CDs exhibit characteristics of greenness, low toxicity, and excellent antioxidant and anti-inflammatory activities, which suggests the potential promising application of BWE-CDs as an antioxidant nanomedicine for inflammatory therapy.</p>", 
  "headline": "Hydrothermally Derived Green Carbon Dots from Broccoli Water Extracts: Decreased Toxicity, Enhanced Free-Radical Scavenging, and Anti-Inflammatory Performance", 
  "identifier": 268076, 
  "image": "https://aperta.ulakbim.gov.tr/static/img/logo/aperta_logo_with_icon.svg", 
  "license": "http://www.opendefinition.org/licenses/cc-by", 
  "name": "Hydrothermally Derived Green Carbon Dots from Broccoli Water Extracts: Decreased Toxicity, Enhanced Free-Radical Scavenging, and Anti-Inflammatory Performance", 
  "url": "https://aperta.ulakbim.gov.tr/record/268076"
}
0
0
görüntülenme
indirilme
Görüntülenme 0
İndirme 0
Veri hacmi 0 Bytes
Tekil görüntülenme 0
Tekil indirme 0

Alıntı yap