Dergi makalesi Açık Erişim

A genetic algorithm integrated with the initial solution procedure and parameter tuning for capacitated P-median problem

Öksüz, Mehmet Kürşat; Büyüközkan, Kadir; Bal, Alperen; Satoğlu, Şule Itır


MARC21 XML

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="p">Neural Computing and Applications</subfield>
    <subfield code="v">35</subfield>
    <subfield code="n">14467</subfield>
  </datafield>
  <controlfield tag="005">20230907092705.0</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:aperta.ulakbim.gov.tr:263031</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Erzincan Binali Yıldırım Üniversitesi</subfield>
    <subfield code="0">(orcid)0000-0001-5791-3845</subfield>
    <subfield code="a">Öksüz, Mehmet Kürşat</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The capacitated p-median problem is a well-known location-allocation problem that is NP-hard. We proposed an advanced&lt;br&gt;
Genetic Algorithm (GA) integrated with an Initial Solution Procedure for this problem to solve the medium and large-size&lt;br&gt;
instances. A 3&lt;sup&gt;3&lt;/sup&gt; Full Factorial Design was performed where three levels were selected for the probability of mutation,&lt;br&gt;
population size, and the number of iterations. Parameter tuning was performed to reach better performance at each&lt;br&gt;
instance. MANOVA and Post-Hoc tests were performed to identify significant parameter levels, considering both computational&lt;br&gt;
time and optimality gap percentage. Real data of Lorena and Senne (2003) and the data set presented by&lt;br&gt;
Stefanello et al. (2015) were used to test the proposed algorithm, and the results were compared with those of the other&lt;br&gt;
heuristics existing in the literature. The proposed GA was able to reach the optimal solution for some of the instances in&lt;br&gt;
contrast to other metaheuristics and the Mat-heuristic, and it reached a solution better than the best known for the largest&lt;br&gt;
instance and found near-optimal solutions for the other cases. The results show that the proposed GA has the potential to&lt;br&gt;
enhance the solutions for large-scale instances. Besides, it was also shown that the parameter tuning process might improve&lt;br&gt;
the solution quality in terms of the objective function and the CPU time of the proposed GA, but the magnitude of&lt;br&gt;
improvement may vary among different instances.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="a">10.48623/aperta.263030</subfield>
    <subfield code="i">isVersionOf</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by-nc-nd/4.0/</subfield>
    <subfield code="a">Creative Commons Attribution-NonCommercial-NoDerivatives</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Location-Allocation</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Capacitated p-median problem</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Facility location</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Genetic algorithm</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Initial solution algorithm</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Parameter tuning</subfield>
  </datafield>
  <controlfield tag="001">263031</controlfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">A genetic algorithm integrated with the initial solution procedure and parameter tuning for capacitated P-median problem</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="2">opendefinition.org</subfield>
    <subfield code="a">cc-by</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2023-04-12</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Karadeniz Teknik Üniversitesi</subfield>
    <subfield code="0">(orcid)0000-0001-6321-0302</subfield>
    <subfield code="a">Büyüközkan, Kadir</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">American University of the Middle East</subfield>
    <subfield code="0">(orcid)0000-0003-0675-0796</subfield>
    <subfield code="a">Bal, Alperen</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">İstanbul Teknik Üniversitesi</subfield>
    <subfield code="0">(orcid)0000-0003-2768-4038</subfield>
    <subfield code="a">Satoğlu, Şule Itır</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="u">https://aperta.ulakbim.gov.trrecord/263031/files/A genetic algorithm integrated with the initial solution procedure and parameter tuning for capacitated P-median problem.pdf</subfield>
    <subfield code="s">946515</subfield>
    <subfield code="z">md5:4727499a8b57a7ef6254d747e8bc66aa</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.48623/aperta.263031</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
</record>
79
79
görüntülenme
indirilme
Tüm sürümler Bu sürüm
Görüntülenme 7979
İndirme 7979
Veri hacmi 74.8 MB74.8 MB
Tekil görüntülenme 7575
Tekil indirme 7878

Alıntı yap