Dergi makalesi Açık Erişim
Öksüz, Mehmet Kürşat;
Büyüközkan, Kadir;
Bal, Alperen;
Satoğlu, Şule Itır
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="DOI">10.48623/aperta.263031</identifier>
<creators>
<creator>
<creatorName>Öksüz, Mehmet Kürşat</creatorName>
<givenName>Mehmet Kürşat</givenName>
<familyName>Öksüz</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-5791-3845</nameIdentifier>
<affiliation>Erzincan Binali Yıldırım Üniversitesi</affiliation>
</creator>
<creator>
<creatorName>Büyüközkan, Kadir</creatorName>
<givenName>Kadir</givenName>
<familyName>Büyüközkan</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-6321-0302</nameIdentifier>
<affiliation>Karadeniz Teknik Üniversitesi</affiliation>
</creator>
<creator>
<creatorName>Bal, Alperen</creatorName>
<givenName>Alperen</givenName>
<familyName>Bal</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-0675-0796</nameIdentifier>
<affiliation>American University of the Middle East</affiliation>
</creator>
<creator>
<creatorName>Satoğlu, Şule Itır</creatorName>
<givenName>Şule Itır</givenName>
<familyName>Satoğlu</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-2768-4038</nameIdentifier>
<affiliation>İstanbul Teknik Üniversitesi</affiliation>
</creator>
</creators>
<titles>
<title>A Genetic Algorithm Integrated With The Initial Solution Procedure And Parameter Tuning For Capacitated P-Median Problem</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2023</publicationYear>
<subjects>
<subject>Location-Allocation</subject>
<subject>Capacitated p-median problem</subject>
<subject>Facility location</subject>
<subject>Genetic algorithm</subject>
<subject>Initial solution algorithm</subject>
<subject>Parameter tuning</subject>
</subjects>
<dates>
<date dateType="Issued">2023-04-12</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/263031</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.48623/aperta.263030</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="https://creativecommons.org/licenses/by-nc-nd/4.0/">Creative Commons Attribution-NonCommercial-NoDerivatives</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract"><p>The capacitated p-median problem is a well-known location-allocation problem that is NP-hard. We proposed an advanced<br>
Genetic Algorithm (GA) integrated with an Initial Solution Procedure for this problem to solve the medium and large-size<br>
instances. A 3<sup>3</sup> Full Factorial Design was performed where three levels were selected for the probability of mutation,<br>
population size, and the number of iterations. Parameter tuning was performed to reach better performance at each<br>
instance. MANOVA and Post-Hoc tests were performed to identify significant parameter levels, considering both computational<br>
time and optimality gap percentage. Real data of Lorena and Senne (2003) and the data set presented by<br>
Stefanello et al. (2015) were used to test the proposed algorithm, and the results were compared with those of the other<br>
heuristics existing in the literature. The proposed GA was able to reach the optimal solution for some of the instances in<br>
contrast to other metaheuristics and the Mat-heuristic, and it reached a solution better than the best known for the largest<br>
instance and found near-optimal solutions for the other cases. The results show that the proposed GA has the potential to<br>
enhance the solutions for large-scale instances. Besides, it was also shown that the parameter tuning process might improve<br>
the solution quality in terms of the objective function and the CPU time of the proposed GA, but the magnitude of<br>
improvement may vary among different instances.</p></description>
</descriptions>
<fundingReferences>
<fundingReference>
<funderName>Türkiye Bilimsel ve Teknolojik Araştirma Kurumu</funderName>
<funderIdentifier funderIdentifierType="Crossref Funder ID">https://doi.org/10.13039/501100004410</funderIdentifier>
<awardNumber>215M143</awardNumber>
</fundingReference>
</fundingReferences>
</resource>
| Tüm sürümler | Bu sürüm | |
|---|---|---|
| Görüntülenme | 94 | 94 |
| İndirme | 90 | 90 |
| Veri hacmi | 85.2 MB | 85.2 MB |
| Tekil görüntülenme | 84 | 84 |
| Tekil indirme | 88 | 88 |