Dergi makalesi Açık Erişim
Dettlaff, Magda; Gozupek, Didem; Raczek, Joanna
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/260723</identifier>
<creators>
<creator>
<creatorName>Dettlaff, Magda</creatorName>
<givenName>Magda</givenName>
<familyName>Dettlaff</familyName>
<affiliation>Gdansk Univ Technol, Fac Appl Phys & Math, Gdansk, Poland</affiliation>
</creator>
<creator>
<creatorName>Gozupek, Didem</creatorName>
<givenName>Didem</givenName>
<familyName>Gozupek</familyName>
<affiliation>Gebze Tech Univ, Dept Comp Engn, Kocaeli, Turkey</affiliation>
</creator>
<creator>
<creatorName>Raczek, Joanna</creatorName>
<givenName>Joanna</givenName>
<familyName>Raczek</familyName>
<affiliation>Gdansk Univ Technol, Fac Elect Telecommun & Informat, Gdansk, Poland</affiliation>
</creator>
</creators>
<titles>
<title>Paired Domination Versus Domination And Packing Number In Graphs</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2022</publicationYear>
<dates>
<date dateType="Issued">2022-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/260723</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1007/s10878-022-00873-y</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">Given a graph G = (V(G), E(G)), the size of a minimum dominating set, minimum paired dominating set, and a minimum total dominating set of a graph G are denoted by gamma(G), gamma(pr) (G), and gamma(t) (G), respectively. For a positive integer k, a k-packing in G is a set S subset of V(G) such that for every pair of distinct vertices u and v in S, the distance between u and v is at least k + 1. The k-packing number is the order of a largest kpacking and is denoted by rho(k) (G). It iswell known that gamma(pr) (G) &lt;= 2 gamma(G). In this paper, we prove that it is NP-hard to determine whether gamma(pr) (G) = 2 gamma (G) even for bipartite graphs. We provide a simple characterization of trees with.pr (G) = 2 gamma (G), implying a polynomial-time recognition algorithm. We also prove that even for a bipartite graph, it is NP-hard to determine whether gamma(pr) (G) = gamma(t) (G). We finally prove that it is both NP-hard to determine whether gamma(pr) (G) = 2 rho(4)( G) and whether gamma(pr) (G) = 2 rho(3)(G).</description>
</descriptions>
</resource>
| Görüntülenme | 38 |
| İndirme | 10 |
| Veri hacmi | 1.7 kB |
| Tekil görüntülenme | 33 |
| Tekil indirme | 10 |