Dergi makalesi Açık Erişim
Cetindag, Can; Yazicioglu, Berkay; Koc, Aykut
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/254559</identifier>
<creators>
<creator>
<creatorName>Cetindag, Can</creatorName>
<givenName>Can</givenName>
<familyName>Cetindag</familyName>
</creator>
<creator>
<creatorName>Yazicioglu, Berkay</creatorName>
<givenName>Berkay</givenName>
<familyName>Yazicioglu</familyName>
</creator>
<creator>
<creatorName>Koc, Aykut</creatorName>
<givenName>Aykut</givenName>
<familyName>Koc</familyName>
</creator>
</creators>
<titles>
<title>Named-Entity Recognition In Turkish Legal Texts</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2023</publicationYear>
<dates>
<date dateType="Issued">2023-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/254559</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1017/S1351324922000304</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">Natural language processing (NLP) technologies and applications in legal text processing are gaining momentum. Being one of the most prominent tasks in NLP, named-entity recognition (NER) can substantiate a great convenience for NLP in law due to the variety of named entities in the legal domain and their accentuated importance in legal documents. However, domain-specific NER models in the legal domain are not well studied. We present a NER model for Turkish legal texts with a custom-made corpus as well as several NER architectures based on conditional random fields and bidirectional long-short-term memories (BiLSTMs) to address the task. We also study several combinations of different word embeddings consisting of GloVe, Morph2Vec, and neural network-based character feature extraction techniques either with BiLSTM or convolutional neural networks. We report 92.27% F1 score with a hybrid word representation of GloVe and Morph2Vec with character-level features extracted with BiLSTM. Being an agglutinative language, the morphological structure of Turkish is also considered. To the best of our knowledge, our work is the first legal domain-specific NER study in Turkish and also the first study for an agglutinative language in the legal domain. Thus, our work can also have implications beyond the Turkish language.</description>
</descriptions>
</resource>
| Görüntülenme | 28 |
| İndirme | 8 |
| Veri hacmi | 1.1 kB |
| Tekil görüntülenme | 27 |
| Tekil indirme | 8 |