Konferans bildirisi Açık Erişim

Hybrid-Field Channel Estimation for Massive MIMO Systems based on OMP Cascaded Convolutional Autoencoder

Nayir, Hasan; Karakoca, Erhan; Gorcin, Ali; Qaraqe, Khalid


MARC21 XML

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">user-tubitak-adresli-yayinlar</subfield>
    <subfield code="o">oai:aperta.ulakbim.gov.tr:252745</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">Frequency scarcity implies the utilization of higher frequencies for wireless communications; however, spreading loss becomes a dominating issue as the frequency increases to the level of and beyond millimeter waves. To this end, massive multiple-input multiple-output structures introduce mitigation alternatives. However, to make these solutions possible, the channel estimation approach strives to be modified: since Rayleigh distance is very short for conventional systems, the only far-field channel is examined in that context. On the other hand, the implementation of massive antenna arrays in high frequencies increases Rayleigh distance; thus, both near-field and far-field analyses become necessary. Instead of a dual estimation process, it would be effective and efficient to develop hybrid-field channel estimation techniques. Therefore, in this study, a new channel estimation method which is based on convolutional autoencoder (CAE) and orthogonal matching pursuit (OMP) approach, is proposed for hybrid channel estimation. The results indicate that the proposed OMP-CAE method has much better error performance when compared to the conventional OMP algorithm, especially at low signal-to-noise ratio regimes.</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="a">2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL)</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="a">Creative Commons Attribution</subfield>
    <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Nayir, Hasan</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="z">md5:0034b06631de11888228a0b33b60a0b6</subfield>
    <subfield code="s">224</subfield>
    <subfield code="u">https://aperta.ulakbim.gov.trrecord/252745/files/bib-ebae0dd0-57e5-4927-9c79-57fb9d82dbe4.txt</subfield>
  </datafield>
  <controlfield tag="005">20230728172223.0</controlfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2022-01-01</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1109/VTC2022-Fall57202.2022.10013010</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Hybrid-Field Channel Estimation for Massive MIMO Systems based on OMP Cascaded Convolutional Autoencoder</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Karakoca, Erhan</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Gorcin, Ali</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Qaraqe, Khalid</subfield>
    <subfield code="u">Texas A&amp;M Univ Qatar, Dept Elect &amp; Comp Engn, Doha, Qatar</subfield>
  </datafield>
  <controlfield tag="001">252745</controlfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-tubitak-adresli-yayinlar</subfield>
  </datafield>
</record>
34
5
görüntülenme
indirilme
Görüntülenme 34
İndirme 5
Veri hacmi 1.1 kB
Tekil görüntülenme 31
Tekil indirme 5

Alıntı yap