Konferans bildirisi Açık Erişim
Nayir, Hasan; Karakoca, Erhan; Gorcin, Ali; Qaraqe, Khalid
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/252745</identifier>
<creators>
<creator>
<creatorName>Nayir, Hasan</creatorName>
<givenName>Hasan</givenName>
<familyName>Nayir</familyName>
</creator>
<creator>
<creatorName>Karakoca, Erhan</creatorName>
<givenName>Erhan</givenName>
<familyName>Karakoca</familyName>
</creator>
<creator>
<creatorName>Gorcin, Ali</creatorName>
<givenName>Ali</givenName>
<familyName>Gorcin</familyName>
</creator>
<creator>
<creatorName>Qaraqe, Khalid</creatorName>
<givenName>Khalid</givenName>
<familyName>Qaraqe</familyName>
<affiliation>Texas A&M Univ Qatar, Dept Elect & Comp Engn, Doha, Qatar</affiliation>
</creator>
</creators>
<titles>
<title>Hybrid-Field Channel Estimation For Massive Mimo Systems Based On Omp Cascaded Convolutional Autoencoder</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2022</publicationYear>
<dates>
<date dateType="Issued">2022-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/252745</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1109/VTC2022-Fall57202.2022.10013010</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">Frequency scarcity implies the utilization of higher frequencies for wireless communications; however, spreading loss becomes a dominating issue as the frequency increases to the level of and beyond millimeter waves. To this end, massive multiple-input multiple-output structures introduce mitigation alternatives. However, to make these solutions possible, the channel estimation approach strives to be modified: since Rayleigh distance is very short for conventional systems, the only far-field channel is examined in that context. On the other hand, the implementation of massive antenna arrays in high frequencies increases Rayleigh distance; thus, both near-field and far-field analyses become necessary. Instead of a dual estimation process, it would be effective and efficient to develop hybrid-field channel estimation techniques. Therefore, in this study, a new channel estimation method which is based on convolutional autoencoder (CAE) and orthogonal matching pursuit (OMP) approach, is proposed for hybrid channel estimation. The results indicate that the proposed OMP-CAE method has much better error performance when compared to the conventional OMP algorithm, especially at low signal-to-noise ratio regimes.</description>
</descriptions>
</resource>
| Görüntülenme | 34 |
| İndirme | 5 |
| Veri hacmi | 1.1 kB |
| Tekil görüntülenme | 31 |
| Tekil indirme | 5 |