Dergi makalesi Açık Erişim

Applied machine learning for prediction of waste plastic pyrolysis towards valuable fuel and chemicals production

Cheng, Yi; Ekici, Ecrin; Yildiz, Güray; Yang, Yang; Coward, Brad; Wang, Jiawei


MARC21 XML

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Applied machine learning for prediction of waste plastic pyrolysis towards valuable fuel and chemicals production</subfield>
  </datafield>
  <controlfield tag="001">252347</controlfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Waste plastics, Pyrolysis, Machine learning, Decision tree</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;&lt;a href="https://www.sciencedirect.com/topics/chemistry/thermolysis"&gt;Pyrolysis&lt;/a&gt;&amp;nbsp;is a suitable conversion technology to address the severe ecological and environmental hurdles caused by waste plastics&amp;#39; ineffective pre- and/or post-user management and massive landfilling. By using machine learning (ML) algorithms, the present study developed models for predicting the products of continuous and non-catalytically processes for the pyrolysis of waste plastics. Along with different input datasets, four algorithms, including decision tree (DT), artificial neuron network (ANN), support vector machine (SVM), and Gaussian process (GP), were compared to select input variables for the most accurate models. Among these algorithms, the DT model exhibited generalisable and satisfactory accuracy (R&lt;sup&gt;2&lt;/sup&gt;&amp;nbsp;&amp;gt;&amp;nbsp;0.99) with training data. The dataset with the elemental&amp;nbsp;&lt;a href="https://www.sciencedirect.com/topics/chemistry/phase-composition"&gt;composition&lt;/a&gt;&amp;nbsp;of waste plastics achieved better accuracy than that with the plastic-type for predicting liquid yields. These observations allow the predictions by the data from ultimate analysis when inaccessible to the plastic-type data in unknown plastic wastes. Besides, the combination of ultimate analysis input and the DT model also achieved excellent accuracy in liquid and gas composition predictions.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1016/j.jaap.2023.105857</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:aperta.ulakbim.gov.tr:252347</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="2">opendefinition.org</subfield>
    <subfield code="a">cc-by</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">İzmir Yüksek Teknoloji Enstitüsü</subfield>
    <subfield code="a">Ekici, Ecrin</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">İzmir Yüksek Teknoloji Enstitüsü</subfield>
    <subfield code="a">Yildiz, Güray</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Aston University</subfield>
    <subfield code="a">Yang, Yang</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Aston University</subfield>
    <subfield code="a">Coward, Brad</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Aston University</subfield>
    <subfield code="a">Wang, Jiawei</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="b">article</subfield>
    <subfield code="a">publication</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="z">md5:9a5fd2648d5ac0a00ad5b3df9d008166</subfield>
    <subfield code="s">3945466</subfield>
    <subfield code="u">https://aperta.ulakbim.gov.trrecord/252347/files/Cheng et al. - 2023.pdf</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Aston University</subfield>
    <subfield code="a">Cheng, Yi</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by-nc-nd/4.0/</subfield>
    <subfield code="a">Creative Commons Attribution-NonCommercial-NoDerivatives</subfield>
  </datafield>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">akh</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2023-01-05</subfield>
  </datafield>
  <controlfield tag="005">20230418140531.0</controlfield>
</record>
42
39
görüntülenme
indirilme
Görüntülenme 42
İndirme 39
Veri hacmi 153.9 MB
Tekil görüntülenme 40
Tekil indirme 36

Alıntı yap