Dergi makalesi Açık Erişim
Cheng, Yi; Ekici, Ecrin; Yildiz, Güray; Yang, Yang; Coward, Brad; Wang, Jiawei
{ "conceptrecid": "252346", "created": "2023-04-18T14:05:31.751578+00:00", "doi": "10.1016/j.jaap.2023.105857", "files": [ { "bucket": "f4a2ba56-0d72-4672-84c6-c99daae875e3", "checksum": "md5:9a5fd2648d5ac0a00ad5b3df9d008166", "key": "Cheng et al. - 2023.pdf", "links": { "self": "https://aperta.ulakbim.gov.tr/api/files/f4a2ba56-0d72-4672-84c6-c99daae875e3/Cheng%20et%20al.%20-%202023.pdf" }, "size": 3945466, "type": "pdf" } ], "id": 252347, "links": { "badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.1016/j.jaap.2023.105857.svg", "bucket": "https://aperta.ulakbim.gov.tr/api/files/f4a2ba56-0d72-4672-84c6-c99daae875e3", "doi": "https://doi.org/10.1016/j.jaap.2023.105857", "html": "https://aperta.ulakbim.gov.tr/record/252347", "latest": "https://aperta.ulakbim.gov.tr/api/records/252347", "latest_html": "https://aperta.ulakbim.gov.tr/record/252347" }, "metadata": { "access_right": "open", "access_right_category": "success", "creators": [ { "affiliation": "Aston University", "name": "Cheng, Yi" }, { "affiliation": "\u0130zmir Y\u00fcksek Teknoloji Enstit\u00fcs\u00fc", "name": "Ekici, Ecrin" }, { "affiliation": "\u0130zmir Y\u00fcksek Teknoloji Enstit\u00fcs\u00fc", "name": "Yildiz, G\u00fcray" }, { "affiliation": "Aston University", "name": "Yang, Yang" }, { "affiliation": "Aston University", "name": "Coward, Brad" }, { "affiliation": "Aston University", "name": "Wang, Jiawei" } ], "description": "<p><a href=\"https://www.sciencedirect.com/topics/chemistry/thermolysis\">Pyrolysis</a> is a suitable conversion technology to address the severe ecological and environmental hurdles caused by waste plastics' ineffective pre- and/or post-user management and massive landfilling. By using machine learning (ML) algorithms, the present study developed models for predicting the products of continuous and non-catalytically processes for the pyrolysis of waste plastics. Along with different input datasets, four algorithms, including decision tree (DT), artificial neuron network (ANN), support vector machine (SVM), and Gaussian process (GP), were compared to select input variables for the most accurate models. Among these algorithms, the DT model exhibited generalisable and satisfactory accuracy (R<sup>2</sup> > 0.99) with training data. The dataset with the elemental <a href=\"https://www.sciencedirect.com/topics/chemistry/phase-composition\">composition</a> of waste plastics achieved better accuracy than that with the plastic-type for predicting liquid yields. These observations allow the predictions by the data from ultimate analysis when inaccessible to the plastic-type data in unknown plastic wastes. Besides, the combination of ultimate analysis input and the DT model also achieved excellent accuracy in liquid and gas composition predictions.</p>", "doi": "10.1016/j.jaap.2023.105857", "has_grant": true, "keywords": [ "Waste plastics, Pyrolysis, Machine learning, Decision tree" ], "language": "akh", "license": { "id": "cc-by-nc-nd-4.0" }, "publication_date": "2023-01-05", "relations": { "version": [ { "count": 1, "index": 0, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "252347" }, "parent": { "pid_type": "recid", "pid_value": "252346" } } ] }, "resource_type": { "subtype": "article", "title": "Dergi makalesi", "type": "publication" }, "science_branches": [ "Teknik Bilimler > Kimya M\u00fchendisli\u011fi ve Teknolojisi" ], "title": "Applied machine learning for prediction of waste plastic pyrolysis towards valuable fuel and chemicals production", "tubitak_grants": [ { "program": "DIGER", "project_number": "119N302", "workgroup": "MAG" } ] }, "owners": [ 379 ], "revision": 1, "stats": { "downloads": 29.0, "unique_downloads": 26.0, "unique_views": 31.0, "version_downloads": 29.0, "version_unique_downloads": 26.0, "version_unique_views": 31.0, "version_views": 33.0, "version_volume": 114418514.0, "views": 33.0, "volume": 114418514.0 }, "updated": "2023-04-18T14:05:31.799263+00:00" }
Görüntülenme | 33 |
İndirme | 29 |
Veri hacmi | 114.4 MB |
Tekil görüntülenme | 31 |
Tekil indirme | 26 |