Dergi makalesi Açık Erişim

mu-statistical convergence and the space of functions mu-stat continuous on the segment

Sadigova, S. R.


Dublin Core

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Sadigova, S. R.</dc:creator>
  <dc:date>2021-01-01</dc:date>
  <dc:description>In this work, the concept of a point mu-statistical density is defined. Basing on this notion, the concept of mu-statistical limit, generated by some Borel measure mu (.), is defined at a point. We also introduce the concept of mu-statistical fundamentality at a point, and prove its equivalence to the concept of mu-stat convergence. The classification of discontinuity points is transferred to this case. The appropriate space of mu-stat continuous functions on the segment with sup-norm is defined. It is proved that this space is a Banach space and the relationship between this space and the spaces of continuous and Lebesgue summable functions is considered.</dc:description>
  <dc:identifier>https://aperta.ulakbim.gov.trrecord/235982</dc:identifier>
  <dc:identifier>oai:aperta.ulakbim.gov.tr:235982</dc:identifier>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights>
  <dc:source>CARPATHIAN MATHEMATICAL PUBLICATIONS 13(2) 433-451</dc:source>
  <dc:title>mu-statistical convergence and the space of functions mu-stat continuous on the segment</dc:title>
  <dc:type>info:eu-repo/semantics/article</dc:type>
  <dc:type>publication-article</dc:type>
</oai_dc:dc>
34
12
görüntülenme
indirilme
Görüntülenme 34
İndirme 12
Veri hacmi 2.0 kB
Tekil görüntülenme 32
Tekil indirme 12

Alıntı yap