Dergi makalesi Açık Erişim
Sadigova, S. R.
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/235982</identifier>
<creators>
<creator>
<creatorName>Sadigova, S. R.</creatorName>
<givenName>S. R.</givenName>
<familyName>Sadigova</familyName>
</creator>
</creators>
<titles>
<title>Mu-Statistical Convergence And The Space Of Functions Mu-Stat Continuous On The Segment</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2021</publicationYear>
<dates>
<date dateType="Issued">2021-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/235982</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.15330/cmp.13.2.433-451</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">In this work, the concept of a point mu-statistical density is defined. Basing on this notion, the concept of mu-statistical limit, generated by some Borel measure mu (.), is defined at a point. We also introduce the concept of mu-statistical fundamentality at a point, and prove its equivalence to the concept of mu-stat convergence. The classification of discontinuity points is transferred to this case. The appropriate space of mu-stat continuous functions on the segment with sup-norm is defined. It is proved that this space is a Banach space and the relationship between this space and the spaces of continuous and Lebesgue summable functions is considered.</description>
</descriptions>
</resource>
| Görüntülenme | 34 |
| İndirme | 12 |
| Veri hacmi | 2.0 kB |
| Tekil görüntülenme | 32 |
| Tekil indirme | 12 |