Dergi makalesi Açık Erişim

mu-statistical convergence and the space of functions mu-stat continuous on the segment

Sadigova, S. R.


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/235982</identifier>
  <creators>
    <creator>
      <creatorName>Sadigova, S. R.</creatorName>
      <givenName>S. R.</givenName>
      <familyName>Sadigova</familyName>
    </creator>
  </creators>
  <titles>
    <title>Mu-Statistical Convergence And The Space Of Functions Mu-Stat Continuous On The Segment</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2021</publicationYear>
  <dates>
    <date dateType="Issued">2021-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/235982</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.15330/cmp.13.2.433-451</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">In this work, the concept of a point mu-statistical density is defined. Basing on this notion, the concept of mu-statistical limit, generated by some Borel measure mu (.), is defined at a point. We also introduce the concept of mu-statistical fundamentality at a point, and prove its equivalence to the concept of mu-stat convergence. The classification of discontinuity points is transferred to this case. The appropriate space of mu-stat continuous functions on the segment with sup-norm is defined. It is proved that this space is a Banach space and the relationship between this space and the spaces of continuous and Lebesgue summable functions is considered.</description>
  </descriptions>
</resource>
34
12
görüntülenme
indirilme
Görüntülenme 34
İndirme 12
Veri hacmi 2.0 kB
Tekil görüntülenme 32
Tekil indirme 12

Alıntı yap