Dergi makalesi Açık Erişim
Calci, Tugce Pekacar; Ungor, Burcu; Harmanci, Abdullah
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Calci, Tugce Pekacar</dc:creator> <dc:creator>Ungor, Burcu</dc:creator> <dc:creator>Harmanci, Abdullah</dc:creator> <dc:date>2021-01-01</dc:date> <dc:description>Let R be a ring with identity, M be a right R-module and F be a fully invariant submodule of M. The concept of an F-inverse split module M has been investigated recently. In this paper, we approach to this concept with a different perspective, that is, we deal with a notion of an F-image split module M, and study various properties and obtain some characterizations of this kind of modules. By means of F-image split modules M, we focus on modules M in which fully invariant submodules F are dual Rickart direct summands. In this way, we contribute to the notion of a T-dual Rickart module M by considering (Z) over bar (2) (M) as the fully invariant submodule F of M. We also deal with a notion of relatively image splitness to investigate direct sums of image split modules. Some applications of image split modules to rings are given.</dc:description> <dc:identifier>https://aperta.ulakbim.gov.trrecord/232580</dc:identifier> <dc:identifier>oai:aperta.ulakbim.gov.tr:232580</dc:identifier> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights> <dc:source>FILOMAT 35(11) 3679-3687</dc:source> <dc:title>Module Decompositions by Images of Fully Invariant Submodules</dc:title> <dc:type>info:eu-repo/semantics/article</dc:type> <dc:type>publication-article</dc:type> </oai_dc:dc>
Görüntülenme | 15 |
İndirme | 3 |
Veri hacmi | 402 Bytes |
Tekil görüntülenme | 13 |
Tekil indirme | 3 |