Dergi makalesi Açık Erişim

Module Decompositions by Images of Fully Invariant Submodules

Calci, Tugce Pekacar; Ungor, Burcu; Harmanci, Abdullah


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/232580</identifier>
  <creators>
    <creator>
      <creatorName>Calci, Tugce Pekacar</creatorName>
      <givenName>Tugce Pekacar</givenName>
      <familyName>Calci</familyName>
      <affiliation>Ankara Univ, Dept Math, Ankara, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Ungor, Burcu</creatorName>
      <givenName>Burcu</givenName>
      <familyName>Ungor</familyName>
      <affiliation>Ankara Univ, Dept Math, Ankara, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Harmanci, Abdullah</creatorName>
      <givenName>Abdullah</givenName>
      <familyName>Harmanci</familyName>
      <affiliation>Hacettepe Univ, Dept Math, Ankara, Turkey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Module Decompositions By Images Of Fully Invariant Submodules</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2021</publicationYear>
  <dates>
    <date dateType="Issued">2021-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/232580</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.2298/FIL2111679P</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">Let R be a ring with identity, M be a right R-module and F be a fully invariant submodule of M. The concept of an F-inverse split module M has been investigated recently. In this paper, we approach to this concept with a different perspective, that is, we deal with a notion of an F-image split module M, and study various properties and obtain some characterizations of this kind of modules. By means of F-image split modules M, we focus on modules M in which fully invariant submodules F are dual Rickart direct summands. In this way, we contribute to the notion of a T-dual Rickart module M by considering (Z) over bar (2) (M) as the fully invariant submodule F of M. We also deal with a notion of relatively image splitness to investigate direct sums of image split modules. Some applications of image split modules to rings are given.</description>
  </descriptions>
</resource>
15
3
görüntülenme
indirilme
Görüntülenme 15
İndirme 3
Veri hacmi 402 Bytes
Tekil görüntülenme 13
Tekil indirme 3

Alıntı yap