Dergi makalesi Açık Erişim
Calci, Tugce Pekacar; Ungor, Burcu; Harmanci, Abdullah
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/232580</identifier> <creators> <creator> <creatorName>Calci, Tugce Pekacar</creatorName> <givenName>Tugce Pekacar</givenName> <familyName>Calci</familyName> <affiliation>Ankara Univ, Dept Math, Ankara, Turkey</affiliation> </creator> <creator> <creatorName>Ungor, Burcu</creatorName> <givenName>Burcu</givenName> <familyName>Ungor</familyName> <affiliation>Ankara Univ, Dept Math, Ankara, Turkey</affiliation> </creator> <creator> <creatorName>Harmanci, Abdullah</creatorName> <givenName>Abdullah</givenName> <familyName>Harmanci</familyName> <affiliation>Hacettepe Univ, Dept Math, Ankara, Turkey</affiliation> </creator> </creators> <titles> <title>Module Decompositions By Images Of Fully Invariant Submodules</title> </titles> <publisher>Aperta</publisher> <publicationYear>2021</publicationYear> <dates> <date dateType="Issued">2021-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/232580</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.2298/FIL2111679P</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">Let R be a ring with identity, M be a right R-module and F be a fully invariant submodule of M. The concept of an F-inverse split module M has been investigated recently. In this paper, we approach to this concept with a different perspective, that is, we deal with a notion of an F-image split module M, and study various properties and obtain some characterizations of this kind of modules. By means of F-image split modules M, we focus on modules M in which fully invariant submodules F are dual Rickart direct summands. In this way, we contribute to the notion of a T-dual Rickart module M by considering (Z) over bar (2) (M) as the fully invariant submodule F of M. We also deal with a notion of relatively image splitness to investigate direct sums of image split modules. Some applications of image split modules to rings are given.</description> </descriptions> </resource>
Görüntülenme | 15 |
İndirme | 3 |
Veri hacmi | 402 Bytes |
Tekil görüntülenme | 13 |
Tekil indirme | 3 |