Dergi makalesi Açık Erişim
Karakaya, Nusret; Evrendilek, Fatih; Gungor, Kerem; Onal, Deniz
{ "conceptrecid": "13746", "created": "2021-03-15T08:10:53.645526+00:00", "doi": "10.1002/clen.201200683", "files": [ { "bucket": "b05b9aa8-94ff-4ef0-aeb8-21ccabe42060", "checksum": "md5:4b24a43da5259e18519e8021ac0e1c0e", "key": "bib-57caa0c6-4f11-4c19-bc2a-9fdf6a032fed.txt", "links": { "self": "https://aperta.ulakbim.gov.tr/api/files/b05b9aa8-94ff-4ef0-aeb8-21ccabe42060/bib-57caa0c6-4f11-4c19-bc2a-9fdf6a032fed.txt" }, "size": 228, "type": "txt" } ], "id": 13747, "links": { "badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.1002/clen.201200683.svg", "bucket": "https://aperta.ulakbim.gov.tr/api/files/b05b9aa8-94ff-4ef0-aeb8-21ccabe42060", "doi": "https://doi.org/10.1002/clen.201200683", "html": "https://aperta.ulakbim.gov.tr/record/13747", "latest": "https://aperta.ulakbim.gov.tr/api/records/13747", "latest_html": "https://aperta.ulakbim.gov.tr/record/13747" }, "metadata": { "access_right": "open", "access_right_category": "success", "communities": [ { "id": "tubitak-destekli-proje-yayinlari" } ], "creators": [ { "affiliation": "Abant Izzet Baysal Univ, Dept Environm Engn, TR-14280 Bolu, Turkey", "name": "Karakaya, Nusret" }, { "affiliation": "Abant Izzet Baysal Univ, Dept Environm Engn, TR-14280 Bolu, Turkey", "name": "Evrendilek, Fatih" }, { "affiliation": "Abant Izzet Baysal Univ, Dept Environm Engn, TR-14280 Bolu, Turkey", "name": "Gungor, Kerem" }, { "affiliation": "Middle E Tech Univ, Dept Biol, TR-06531 Ankara, Turkey", "name": "Onal, Deniz" } ], "description": "Human-induced and natural interruptions with continuous streams of observational data necessitate the development of gap-filling and prediction strategies towards better understanding, monitoring and management of aquatic systems. This study quantified the efficacy of multiple non-linear regression (MNLR) versus artificial neural network (ANN) models as well as the temporal partitioning of diurnal versus nocturnal data for the predictions of chlorophyll-a (chl-a) and dissolved oxygen (DO) dynamics. The temporal partitioning increased the predictive performances of the best MNLR models of diurnal DO by 45% and nocturnal DO by 4%, relative to the best diel MNLR model of diel DO (r(adj)(2) = 68.8%). The ANN-based predictions had a higher predictive power than the MNLR-based predictions for both chl-a and DO except for diurnal DO dynamics. The best ANNs based on independent validations were multilayer perceptron (MLP) for diel chl-a, generalized feedforward (GFF) for diurnal and nocturnal chl-a, MLP for diel DO, GFF for diurnal DO, and MLP for nocturnal DO.", "doi": "10.1002/clen.201200683", "has_grant": false, "journal": { "issue": "9", "pages": "872-877", "title": "CLEAN-SOIL AIR WATER", "volume": "41" }, "license": { "id": "cc-by" }, "publication_date": "2013-01-01", "relations": { "version": [ { "count": 1, "index": 0, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "13747" }, "parent": { "pid_type": "recid", "pid_value": "13746" } } ] }, "resource_type": { "subtype": "article", "title": "Dergi makalesi", "type": "publication" }, "title": "Predicting Diel, Diurnal and Nocturnal Dynamics of Dissolved Oxygen and Chlorophyll-a Using Regression Models and Neural Networks" }, "owners": [ 1 ], "revision": 1, "stats": { "downloads": 9.0, "unique_downloads": 9.0, "unique_views": 41.0, "version_downloads": 9.0, "version_unique_downloads": 9.0, "version_unique_views": 41.0, "version_views": 45.0, "version_volume": 2052.0, "views": 45.0, "volume": 2052.0 }, "updated": "2021-03-15T08:10:53.698062+00:00" }
Görüntülenme | 45 |
İndirme | 9 |
Veri hacmi | 2.1 kB |
Tekil görüntülenme | 41 |
Tekil indirme | 9 |