Dergi makalesi Açık Erişim

Predicting Diel, Diurnal and Nocturnal Dynamics of Dissolved Oxygen and Chlorophyll-a Using Regression Models and Neural Networks

Karakaya, Nusret; Evrendilek, Fatih; Gungor, Kerem; Onal, Deniz


JSON

{
  "conceptrecid": "13746", 
  "created": "2021-03-15T08:10:53.645526+00:00", 
  "doi": "10.1002/clen.201200683", 
  "files": [
    {
      "bucket": "b05b9aa8-94ff-4ef0-aeb8-21ccabe42060", 
      "checksum": "md5:4b24a43da5259e18519e8021ac0e1c0e", 
      "key": "bib-57caa0c6-4f11-4c19-bc2a-9fdf6a032fed.txt", 
      "links": {
        "self": "https://aperta.ulakbim.gov.tr/api/files/b05b9aa8-94ff-4ef0-aeb8-21ccabe42060/bib-57caa0c6-4f11-4c19-bc2a-9fdf6a032fed.txt"
      }, 
      "size": 228, 
      "type": "txt"
    }
  ], 
  "id": 13747, 
  "links": {
    "badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.1002/clen.201200683.svg", 
    "bucket": "https://aperta.ulakbim.gov.tr/api/files/b05b9aa8-94ff-4ef0-aeb8-21ccabe42060", 
    "doi": "https://doi.org/10.1002/clen.201200683", 
    "html": "https://aperta.ulakbim.gov.tr/record/13747", 
    "latest": "https://aperta.ulakbim.gov.tr/api/records/13747", 
    "latest_html": "https://aperta.ulakbim.gov.tr/record/13747"
  }, 
  "metadata": {
    "access_right": "open", 
    "access_right_category": "success", 
    "communities": [
      {
        "id": "tubitak-destekli-proje-yayinlari"
      }
    ], 
    "creators": [
      {
        "affiliation": "Abant Izzet Baysal Univ, Dept Environm Engn, TR-14280 Bolu, Turkey", 
        "name": "Karakaya, Nusret"
      }, 
      {
        "affiliation": "Abant Izzet Baysal Univ, Dept Environm Engn, TR-14280 Bolu, Turkey", 
        "name": "Evrendilek, Fatih"
      }, 
      {
        "affiliation": "Abant Izzet Baysal Univ, Dept Environm Engn, TR-14280 Bolu, Turkey", 
        "name": "Gungor, Kerem"
      }, 
      {
        "affiliation": "Middle E Tech Univ, Dept Biol, TR-06531 Ankara, Turkey", 
        "name": "Onal, Deniz"
      }
    ], 
    "description": "Human-induced and natural interruptions with continuous streams of observational data necessitate the development of gap-filling and prediction strategies towards better understanding, monitoring and management of aquatic systems. This study quantified the efficacy of multiple non-linear regression (MNLR) versus artificial neural network (ANN) models as well as the temporal partitioning of diurnal versus nocturnal data for the predictions of chlorophyll-a (chl-a) and dissolved oxygen (DO) dynamics. The temporal partitioning increased the predictive performances of the best MNLR models of diurnal DO by 45% and nocturnal DO by 4%, relative to the best diel MNLR model of diel DO (r(adj)(2) = 68.8%). The ANN-based predictions had a higher predictive power than the MNLR-based predictions for both chl-a and DO except for diurnal DO dynamics. The best ANNs based on independent validations were multilayer perceptron (MLP) for diel chl-a, generalized feedforward (GFF) for diurnal and nocturnal chl-a, MLP for diel DO, GFF for diurnal DO, and MLP for nocturnal DO.", 
    "doi": "10.1002/clen.201200683", 
    "has_grant": false, 
    "journal": {
      "issue": "9", 
      "pages": "872-877", 
      "title": "CLEAN-SOIL AIR WATER", 
      "volume": "41"
    }, 
    "license": {
      "id": "cc-by"
    }, 
    "publication_date": "2013-01-01", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "13747"
          }, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "13746"
          }
        }
      ]
    }, 
    "resource_type": {
      "subtype": "article", 
      "title": "Dergi makalesi", 
      "type": "publication"
    }, 
    "title": "Predicting Diel, Diurnal and Nocturnal Dynamics of Dissolved Oxygen and Chlorophyll-a Using Regression Models and Neural Networks"
  }, 
  "owners": [
    1
  ], 
  "revision": 1, 
  "stats": {
    "downloads": 9.0, 
    "unique_downloads": 9.0, 
    "unique_views": 41.0, 
    "version_downloads": 9.0, 
    "version_unique_downloads": 9.0, 
    "version_unique_views": 41.0, 
    "version_views": 45.0, 
    "version_volume": 2052.0, 
    "views": 45.0, 
    "volume": 2052.0
  }, 
  "updated": "2021-03-15T08:10:53.698062+00:00"
}
45
9
görüntülenme
indirilme
Görüntülenme 45
İndirme 9
Veri hacmi 2.1 kB
Tekil görüntülenme 41
Tekil indirme 9

Alıntı yap