Dergi makalesi Açık Erişim
Karakaya, Nusret; Evrendilek, Fatih; Gungor, Kerem; Onal, Deniz
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/13747</identifier> <creators> <creator> <creatorName>Karakaya, Nusret</creatorName> <givenName>Nusret</givenName> <familyName>Karakaya</familyName> <affiliation>Abant Izzet Baysal Univ, Dept Environm Engn, TR-14280 Bolu, Turkey</affiliation> </creator> <creator> <creatorName>Evrendilek, Fatih</creatorName> <givenName>Fatih</givenName> <familyName>Evrendilek</familyName> <affiliation>Abant Izzet Baysal Univ, Dept Environm Engn, TR-14280 Bolu, Turkey</affiliation> </creator> <creator> <creatorName>Gungor, Kerem</creatorName> <givenName>Kerem</givenName> <familyName>Gungor</familyName> <affiliation>Abant Izzet Baysal Univ, Dept Environm Engn, TR-14280 Bolu, Turkey</affiliation> </creator> <creator> <creatorName>Onal, Deniz</creatorName> <givenName>Deniz</givenName> <familyName>Onal</familyName> <affiliation>Middle E Tech Univ, Dept Biol, TR-06531 Ankara, Turkey</affiliation> </creator> </creators> <titles> <title>Predicting Diel, Diurnal And Nocturnal Dynamics Of Dissolved Oxygen And Chlorophyll-A Using Regression Models And Neural Networks</title> </titles> <publisher>Aperta</publisher> <publicationYear>2013</publicationYear> <dates> <date dateType="Issued">2013-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/13747</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1002/clen.201200683</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">Human-induced and natural interruptions with continuous streams of observational data necessitate the development of gap-filling and prediction strategies towards better understanding, monitoring and management of aquatic systems. This study quantified the efficacy of multiple non-linear regression (MNLR) versus artificial neural network (ANN) models as well as the temporal partitioning of diurnal versus nocturnal data for the predictions of chlorophyll-a (chl-a) and dissolved oxygen (DO) dynamics. The temporal partitioning increased the predictive performances of the best MNLR models of diurnal DO by 45% and nocturnal DO by 4%, relative to the best diel MNLR model of diel DO (r(adj)(2) = 68.8%). The ANN-based predictions had a higher predictive power than the MNLR-based predictions for both chl-a and DO except for diurnal DO dynamics. The best ANNs based on independent validations were multilayer perceptron (MLP) for diel chl-a, generalized feedforward (GFF) for diurnal and nocturnal chl-a, MLP for diel DO, GFF for diurnal DO, and MLP for nocturnal DO.</description> </descriptions> </resource>
Görüntülenme | 45 |
İndirme | 9 |
Veri hacmi | 2.1 kB |
Tekil görüntülenme | 41 |
Tekil indirme | 9 |