Dergi makalesi Açık Erişim

Monomial curve families supporting Rossi's conjecture

Arslan, Feza; Sipahi, Neslihan; Sahin, Nil


MARC21 XML

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Monomial curve families supporting Rossi's conjecture</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="p">JOURNAL OF SYMBOLIC COMPUTATION</subfield>
    <subfield code="v">55</subfield>
    <subfield code="c">10-18</subfield>
  </datafield>
  <controlfield tag="001">12177</controlfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">In this article, we give a constructive method to form infinitely many families of monomial curves in affine 4-space with corresponding Gorenstein local rings in embedding dimension 4 supporting Rossi's conjecture. Starting with any monomial curve in affine 2-space, we obtain large families of Gorenstein local rings with embedding dimension 4, having non-decreasing Hilbert functions, although their associated graded rings are not Cohen-Macaulay. (C) 2013 Elsevier B.V. All rights reserved.</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="2">opendefinition.org</subfield>
    <subfield code="a">cc-by</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey</subfield>
    <subfield code="a">Sipahi, Neslihan</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey</subfield>
    <subfield code="a">Sahin, Nil</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="b">article</subfield>
    <subfield code="a">publication</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Mimar Sinan Fine Arts Univ, Dept Math, TR-34380 Istanbul, Turkey</subfield>
    <subfield code="a">Arslan, Feza</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2013-01-01</subfield>
  </datafield>
  <controlfield tag="005">20210315075006.0</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:zenodo.org:12177</subfield>
    <subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="z">md5:fee79f44572da9b33f0400a9915d11e9</subfield>
    <subfield code="s">147</subfield>
    <subfield code="u">https://aperta.ulakbim.gov.trrecord/12177/files/bib-88cfa609-bd89-4c59-8bb8-4ebe9573b70d.txt</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
    <subfield code="a">Creative Commons Attribution</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1016/j.jsc.2013.03.002</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
</record>
35
4
görüntülenme
indirilme
Görüntülenme 35
İndirme 4
Veri hacmi 588 Bytes
Tekil görüntülenme 33
Tekil indirme 4

Alıntı yap