Dergi makalesi Açık Erişim

Monomial curve families supporting Rossi's conjecture

Arslan, Feza; Sipahi, Neslihan; Sahin, Nil


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/12177</identifier>
  <creators>
    <creator>
      <creatorName>Arslan, Feza</creatorName>
      <givenName>Feza</givenName>
      <familyName>Arslan</familyName>
      <affiliation>Mimar Sinan Fine Arts Univ, Dept Math, TR-34380 Istanbul, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Sipahi, Neslihan</creatorName>
      <givenName>Neslihan</givenName>
      <familyName>Sipahi</familyName>
      <affiliation>Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Sahin, Nil</creatorName>
      <givenName>Nil</givenName>
      <familyName>Sahin</familyName>
      <affiliation>Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Monomial Curve Families Supporting Rossi'S Conjecture</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2013</publicationYear>
  <dates>
    <date dateType="Issued">2013-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/12177</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.jsc.2013.03.002</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">In this article, we give a constructive method to form infinitely many families of monomial curves in affine 4-space with corresponding Gorenstein local rings in embedding dimension 4 supporting Rossi's conjecture. Starting with any monomial curve in affine 2-space, we obtain large families of Gorenstein local rings with embedding dimension 4, having non-decreasing Hilbert functions, although their associated graded rings are not Cohen-Macaulay. (C) 2013 Elsevier B.V. All rights reserved.</description>
  </descriptions>
</resource>
35
4
görüntülenme
indirilme
Görüntülenme 35
İndirme 4
Veri hacmi 588 Bytes
Tekil görüntülenme 33
Tekil indirme 4

Alıntı yap