Dergi makalesi Açık Erişim
Arslan, Feza; Sipahi, Neslihan; Sahin, Nil
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/12177</identifier> <creators> <creator> <creatorName>Arslan, Feza</creatorName> <givenName>Feza</givenName> <familyName>Arslan</familyName> <affiliation>Mimar Sinan Fine Arts Univ, Dept Math, TR-34380 Istanbul, Turkey</affiliation> </creator> <creator> <creatorName>Sipahi, Neslihan</creatorName> <givenName>Neslihan</givenName> <familyName>Sipahi</familyName> <affiliation>Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey</affiliation> </creator> <creator> <creatorName>Sahin, Nil</creatorName> <givenName>Nil</givenName> <familyName>Sahin</familyName> <affiliation>Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey</affiliation> </creator> </creators> <titles> <title>Monomial Curve Families Supporting Rossi'S Conjecture</title> </titles> <publisher>Aperta</publisher> <publicationYear>2013</publicationYear> <dates> <date dateType="Issued">2013-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/12177</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.jsc.2013.03.002</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">In this article, we give a constructive method to form infinitely many families of monomial curves in affine 4-space with corresponding Gorenstein local rings in embedding dimension 4 supporting Rossi's conjecture. Starting with any monomial curve in affine 2-space, we obtain large families of Gorenstein local rings with embedding dimension 4, having non-decreasing Hilbert functions, although their associated graded rings are not Cohen-Macaulay. (C) 2013 Elsevier B.V. All rights reserved.</description> </descriptions> </resource>
Görüntülenme | 35 |
İndirme | 4 |
Veri hacmi | 588 Bytes |
Tekil görüntülenme | 33 |
Tekil indirme | 4 |