Dergi makalesi Açık Erişim
Arslan, Feza; Sipahi, Neslihan; Sahin, Nil
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/12177</identifier>
<creators>
<creator>
<creatorName>Arslan, Feza</creatorName>
<givenName>Feza</givenName>
<familyName>Arslan</familyName>
<affiliation>Mimar Sinan Fine Arts Univ, Dept Math, TR-34380 Istanbul, Turkey</affiliation>
</creator>
<creator>
<creatorName>Sipahi, Neslihan</creatorName>
<givenName>Neslihan</givenName>
<familyName>Sipahi</familyName>
<affiliation>Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey</affiliation>
</creator>
<creator>
<creatorName>Sahin, Nil</creatorName>
<givenName>Nil</givenName>
<familyName>Sahin</familyName>
<affiliation>Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey</affiliation>
</creator>
</creators>
<titles>
<title>Monomial Curve Families Supporting Rossi'S Conjecture</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2013</publicationYear>
<dates>
<date dateType="Issued">2013-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/12177</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.jsc.2013.03.002</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">In this article, we give a constructive method to form infinitely many families of monomial curves in affine 4-space with corresponding Gorenstein local rings in embedding dimension 4 supporting Rossi's conjecture. Starting with any monomial curve in affine 2-space, we obtain large families of Gorenstein local rings with embedding dimension 4, having non-decreasing Hilbert functions, although their associated graded rings are not Cohen-Macaulay. (C) 2013 Elsevier B.V. All rights reserved.</description>
</descriptions>
</resource>
| Görüntülenme | 46 |
| İndirme | 8 |
| Veri hacmi | 1.2 kB |
| Tekil görüntülenme | 40 |
| Tekil indirme | 8 |