Dergi makalesi Açık Erişim
Erzan, A; Eckmann, JP
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Erzan, A</dc:creator> <dc:creator>Eckmann, JP</dc:creator> <dc:date>1997-01-01</dc:date> <dc:description>q-derivatives can be identified with the generators of fractal and multifractal sets with discrete dilatation symmetries. Besides providing a natural language in which to discuss homogeneous functions with oscillatory amplitudes, this also allows one to discuss cascade models with continuous scale changes.</dc:description> <dc:identifier>https://aperta.ulakbim.gov.trrecord/101311</dc:identifier> <dc:identifier>oai:zenodo.org:101311</dc:identifier> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights> <dc:source>PHYSICAL REVIEW LETTERS 78(17) 3245-3248</dc:source> <dc:title>q-analysis of fractal sets</dc:title> <dc:type>info:eu-repo/semantics/article</dc:type> <dc:type>publication-article</dc:type> </oai_dc:dc>
Görüntülenme | 23 |
İndirme | 6 |
Veri hacmi | 618 Bytes |
Tekil görüntülenme | 21 |
Tekil indirme | 6 |