Dergi makalesi Açık Erişim
Genc, Hakki Murat; Erol, Osman Kaan; Eksin, Ibrahim; Okutan, Cesur Cevdet
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Enhanced Order Based Single Leap Big Bang - Big Crunch Optimization Approach to Multi-Objective Gate Assignment Problem</subfield> </datafield> <datafield tag="909" ind1="C" ind2="4"> <subfield code="p">JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING</subfield> <subfield code="v">26</subfield> <subfield code="n">3-5</subfield> <subfield code="c">243-268</subfield> </datafield> <controlfield tag="001">99011</controlfield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-tubitak-adresli-yayinlar</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a">In the last few decades, rapid growth in demand for air transportation led to the development of numerous operation research practices in the airline / airport industry. The most widespread practice is the ground scheduling applications, and specifically, gate assignment optimization. An appropriate and efficient gate assignment is of great importance in airport ground operations since it plays a major role in increasing revenues. In this paper, a multi-objective gate assignment problem (MOGAP) is formulated with the objectives of maximizing gate allocation, minimizing passenger walking distance and maximizing flight to gate preference and a solution strategy based on the evolutionary Single Leap Big Bang - Big Crunch optimization method is developed. The MOGAP is a non-deterministic polynomial-time hard (NP-hard) quadratic assignment problem. In the literature, to the best of our knowledge, there is only a single effort to solve the MOGAP for obtaining a pareto front representation of solutions by utilizing nature inspired computation methods. As the major contributions of this paper, a novel multi-objective nature inspired solution technique is proposed and high fidelity problem instance generation is discussed. The effectiveness of the proposed methodology has been illustrated by comparing the simulation results of the method with the previously reported algorithm both on artificially generated problem instances and real world data obtained from Turkey's biggest airport, Ataturk International in Istanbul.</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="2">opendefinition.org</subfield> <subfield code="a">cc-by</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Istanbul Tech Univ, TR-80626 Istanbul, Turkey</subfield> <subfield code="a">Erol, Osman Kaan</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Istanbul Tech Univ, TR-80626 Istanbul, Turkey</subfield> <subfield code="a">Eksin, Ibrahim</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">TUBITAK BILGEM, Gebze, Kocaeli, Turkey</subfield> <subfield code="a">Okutan, Cesur Cevdet</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="b">article</subfield> <subfield code="a">publication</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">TUBITAK BILGEM, Gebze, Kocaeli, Turkey</subfield> <subfield code="a">Genc, Hakki Murat</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2016-01-01</subfield> </datafield> <controlfield tag="005">20210316140559.0</controlfield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="a">10.81043/aperta.99010</subfield> <subfield code="i">isVersionOf</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="o">oai:zenodo.org:99011</subfield> <subfield code="p">user-tubitak-adresli-yayinlar</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="z">md5:635ff369256b5ff027e516be24423d04</subfield> <subfield code="s">242</subfield> <subfield code="u">https://aperta.ulakbim.gov.trrecord/99011/files/bib-4ddd9f6f-9928-4f2e-a1dc-28e05f04ce95.txt</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield> <subfield code="a">Creative Commons Attribution</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.81043/aperta.99011</subfield> <subfield code="2">doi</subfield> </datafield> </record>
Görüntülenme | 36 |
İndirme | 11 |
Veri hacmi | 2.7 kB |
Tekil görüntülenme | 33 |
Tekil indirme | 11 |