Dergi makalesi Açık Erişim
Saydam, Ahmet Ziya; Gokcay, Serhan; Insel, Mustafa
Air wake distribution around the superstructure of a mega-yacht is a key concern for the designer because of various reasons such as comfort expectations in recreational deck areas, self-noise generation, air pollution and temperature gradients due to exhaust interactions, and safety of helicopter operations such as landing/take off and hovering. The Reynolds-averaged Navier-Stokes (RANS) technique in computational fluid dynamics (CFD) is frequently used in studies on mega-yacht hydrodynamics and aerodynamics with satisfactory results. In this article, a case study is presented for the utilization of CFD in a mega-yacht's superstructure design. The flow field in recreational open areas has been analyzed for the increase in velocity due to the existence of the superstructure. A reduction in self-noise of the mast structure has been aimed by reducing flow separation and vorticity. Time-dependent velocity data obtained with scale-resolving simulations are presented for the evaluation of helicopter landings. The capabilities and limitations of the RANS technique are discussed along with recent developments in modeling approaches.
Dosya adı | Boyutu | |
---|---|---|
bib-645dea12-c45e-4a0a-9452-e5a79704121a.txt
md5:d8aeebdb96c36b7e5cbefabf9eb85564 |
189 Bytes | İndir |
Görüntülenme | 29 |
İndirme | 5 |
Veri hacmi | 945 Bytes |
Tekil görüntülenme | 29 |
Tekil indirme | 5 |