Konferans bildirisi Açık Erişim

Software Fault Prediction of Unlabeled Program Modules

Catal, C.; Sevim, U.; Diri, B.


JSON

{
  "conceptdoi": "10.81043/aperta.94296", 
  "conceptrecid": "94296", 
  "created": "2021-03-16T13:00:18.030647+00:00", 
  "doi": "10.81043/aperta.94297", 
  "files": [
    {
      "bucket": "a21b3e30-f639-4fda-8dfb-14a67899ae2e", 
      "checksum": "md5:1b6e6aeb966620d22289934371aa6012", 
      "key": "bib-a55b13fd-10f7-491d-8a21-5e0e7b2f46e3.txt", 
      "links": {
        "self": "https://aperta.ulakbim.gov.tr/api/files/a21b3e30-f639-4fda-8dfb-14a67899ae2e/bib-a55b13fd-10f7-491d-8a21-5e0e7b2f46e3.txt"
      }, 
      "size": 145, 
      "type": "txt"
    }
  ], 
  "id": 94297, 
  "links": {
    "badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.81043/aperta.94297.svg", 
    "bucket": "https://aperta.ulakbim.gov.tr/api/files/a21b3e30-f639-4fda-8dfb-14a67899ae2e", 
    "conceptbadge": "https://aperta.ulakbim.gov.tr/badge/doi/10.81043/aperta.94296.svg", 
    "conceptdoi": "https://doi.org/10.81043/aperta.94296", 
    "doi": "https://doi.org/10.81043/aperta.94297", 
    "html": "https://aperta.ulakbim.gov.tr/record/94297", 
    "latest": "https://aperta.ulakbim.gov.tr/api/records/94297", 
    "latest_html": "https://aperta.ulakbim.gov.tr/record/94297"
  }, 
  "metadata": {
    "access_right": "open", 
    "access_right_category": "success", 
    "communities": [
      {
        "id": "tubitak-adresli-yayinlar"
      }
    ], 
    "creators": [
      {
        "affiliation": "Sci & Technol Res Council TURKEY, Inst Informat Technol, Marmara Res Ctr, TR-41470 Gebze, Kocaeli, Turkey", 
        "name": "Catal, C."
      }, 
      {
        "affiliation": "Bogazici Univ, Dept Comp Engn, TR-34342 Istanbul, Turkey", 
        "name": "Sevim, U."
      }, 
      {
        "affiliation": "Yildiz Tech Univ, Dept Comp Engn, TR-34349 Istanbul, Turkey", 
        "name": "Diri, B."
      }
    ], 
    "description": "Software metrics and fault data belonging to a previous software version are used to build the software fault prediction model for the next release of the software. Until now, different classification algorithms have been used to build this kind of models. However, there are cases when previous fault data are not present; and hence, supervised learning approaches cannot be applied. In this study, we propose a fully automated technique which does not require an expert during the prediction process. In addition, it is not required to identify the number of clusters before the clustering phase, as required by K-means clustering method. Software metrics thresholds are used to remove the expert necessity.", 
    "doi": "10.81043/aperta.94297", 
    "has_grant": false, 
    "license": {
      "id": "cc-by"
    }, 
    "meeting": {
      "title": "WORLD CONGRESS ON ENGINEERING 2009, VOLS I AND II"
    }, 
    "publication_date": "2009-01-01", 
    "related_identifiers": [
      {
        "identifier": "10.81043/aperta.94296", 
        "relation": "isVersionOf", 
        "scheme": "doi"
      }
    ], 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "94297"
          }, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "94296"
          }
        }
      ]
    }, 
    "resource_type": {
      "subtype": "conferencepaper", 
      "title": "Konferans bildirisi", 
      "type": "publication"
    }, 
    "title": "Software Fault Prediction of Unlabeled Program Modules"
  }, 
  "owners": [
    1
  ], 
  "revision": 1, 
  "stats": {
    "downloads": 9.0, 
    "unique_downloads": 9.0, 
    "unique_views": 57.0, 
    "version_downloads": 9.0, 
    "version_unique_downloads": 9.0, 
    "version_unique_views": 52.0, 
    "version_views": 55.0, 
    "version_volume": 1305.0, 
    "views": 60.0, 
    "volume": 1305.0
  }, 
  "updated": "2021-03-16T13:00:18.075733+00:00"
}
60
9
görüntülenme
indirilme
Görüntülenme 60
İndirme 9
Veri hacmi 1.3 kB
Tekil görüntülenme 57
Tekil indirme 9

Alıntı yap