Dergi makalesi Açık Erişim
Kosan, M. Tamer; Truong Cong Quynh; Zemlicka, Jan
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/9047</identifier>
<creators>
<creator>
<creatorName>Kosan, M. Tamer</creatorName>
<givenName>M. Tamer</givenName>
<familyName>Kosan</familyName>
<affiliation>Gazi Univ, Dept Math, Fac Sci, Ankara, Turkey</affiliation>
</creator>
<creator>
<creatorName>Truong Cong Quynh</creatorName>
<affiliation>Univ Danang, Univ Sci & Educ, Dept Math, 459 Ton Duc Thang, Danang, Vietnam</affiliation>
</creator>
<creator>
<creatorName>Zemlicka, Jan</creatorName>
<givenName>Jan</givenName>
<familyName>Zemlicka</familyName>
<affiliation>Charles Univ Prague, Dept Algebra, Fac Math & Phys, Sokolovska 83, Prague 18675 8, Czech Republic</affiliation>
</creator>
</creators>
<titles>
<title>Unj-Rings</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2020</publicationYear>
<dates>
<date dateType="Issued">2020-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/9047</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1142/S0219498820501704</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">In analogy to the elementwise definitions of UU- and UJ-rings, a ring R is called UNJ if 1 + N(R) + J(R) = U(R). After presenting several characterizations and properties, we consider the UNJ-rings within many well-studied classes of rings. In particular, we examine Dedekind finite rings, 2-primal rings, (semi)regular rings, pi-regular rings and rings that satisfy the identity x(2) = x. Finally, we conclude this paper with group UNJ-rings.</description>
</descriptions>
</resource>
| Görüntülenme | 58 |
| İndirme | 11 |
| Veri hacmi | 1.2 kB |
| Tekil görüntülenme | 55 |
| Tekil indirme | 11 |