Dergi makalesi Açık Erişim
Durmaz, Olgun; Aktas, Busra; Gundogan, Halit
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/8835</identifier> <creators> <creator> <creatorName>Durmaz, Olgun</creatorName> <givenName>Olgun</givenName> <familyName>Durmaz</familyName> <affiliation>Kirikkale Univ, Fac Sci & Arts, Dept Math, TR-71450 Yahsihan, Kirikkale, Turkey</affiliation> </creator> <creator> <creatorName>Aktas, Busra</creatorName> <givenName>Busra</givenName> <familyName>Aktas</familyName> <affiliation>Kirikkale Univ, Fac Sci & Arts, Dept Math, TR-71450 Yahsihan, Kirikkale, Turkey</affiliation> </creator> <creator> <creatorName>Gundogan, Halit</creatorName> <givenName>Halit</givenName> <familyName>Gundogan</familyName> <affiliation>Kirikkale Univ, Fac Sci & Arts, Dept Math, TR-71450 Yahsihan, Kirikkale, Turkey</affiliation> </creator> </creators> <titles> <title>On Parallelizable Spheres In Semi Euclidean Space</title> </titles> <publisher>Aperta</publisher> <publicationYear>2020</publicationYear> <dates> <date dateType="Issued">2020-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/8835</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.81043/aperta.8834</relatedIdentifier> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.81043/aperta.8835</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">In Euclidean space, there exist four theorems which show that S-n sphere is not parallelizable for n not equal 1, 3, 7. While three of them are shown by using Bott theorem, the last one is shown by using Hurwitz-Radon numbers. In this paper, a theorem and the proof of this theorem about parallelization of spheres in semi-Euclidean space is given. It is presented that some spheres are parallelizable with respect to specific number systems.</description> </descriptions> </resource>
Görüntülenme | 23 |
İndirme | 5 |
Veri hacmi | 760 Bytes |
Tekil görüntülenme | 23 |
Tekil indirme | 5 |