Dergi makalesi Açık Erişim

Short-mid-term solar power prediction by using artificial neural networks

Izgi, Ercan; Oztopal, Ahmet; Yerli, Bihter; Kaymak, Mustafa Kemal; Sahin, Ahmet Duran


Dublin Core

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Izgi, Ercan</dc:creator>
  <dc:creator>Oztopal, Ahmet</dc:creator>
  <dc:creator>Yerli, Bihter</dc:creator>
  <dc:creator>Kaymak, Mustafa Kemal</dc:creator>
  <dc:creator>Sahin, Ahmet Duran</dc:creator>
  <dc:date>2012-01-01</dc:date>
  <dc:description>Solar irradiation is one of the major renewable energy sources and technologies related with this source have reached to high level applications. Prediction of solar irradiation shows some uncertainties depending on atmospheric parameters such as temperature, cloud amount, dust and relative humidity. These conditions add new uncertainties to the prediction of this astronomical parameter. In this case, prediction of generated electricity by photovoltaic or other solar technologies could be better than directly solar irradiation.</dc:description>
  <dc:identifier>https://aperta.ulakbim.gov.trrecord/83409</dc:identifier>
  <dc:identifier>oai:zenodo.org:83409</dc:identifier>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights>
  <dc:source>SOLAR ENERGY 86(2) 725-733</dc:source>
  <dc:title>Short-mid-term solar power prediction by using artificial neural networks</dc:title>
  <dc:type>info:eu-repo/semantics/article</dc:type>
  <dc:type>publication-article</dc:type>
</oai_dc:dc>
55
12
görüntülenme
indirilme
Görüntülenme 55
İndirme 12
Veri hacmi 2.0 kB
Tekil görüntülenme 54
Tekil indirme 12

Alıntı yap