Dergi makalesi Açık Erişim
Ay, Buket; Dag, Idris; Gorgulu, Melis Zorsahin
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/82219</identifier> <creators> <creator> <creatorName>Ay, Buket</creatorName> <givenName>Buket</givenName> <familyName>Ay</familyName> <affiliation>Eskisehir Osmangazi Univ, Math Comp Dept, Eskisehir, Turkey</affiliation> </creator> <creator> <creatorName>Dag, Idris</creatorName> <givenName>Idris</givenName> <familyName>Dag</familyName> <affiliation>Eskisehir Osmangazi Univ, Math Comp Dept, Eskisehir, Turkey</affiliation> </creator> <creator> <creatorName>Gorgulu, Melis Zorsahin</creatorName> <givenName>Melis Zorsahin</givenName> <familyName>Gorgulu</familyName> <affiliation>Eskisehir Osmangazi Univ, Math Comp Dept, Eskisehir, Turkey</affiliation> </creator> </creators> <titles> <title>Trigonometric Quadratic B-Spline Subdomain Galerkin Algorithm For The Burgers' Equation</title> </titles> <publisher>Aperta</publisher> <publicationYear>2015</publicationYear> <dates> <date dateType="Issued">2015-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/82219</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1515/phys-2015-0059</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">A variant of the subdomain Galerkin method has been set up to find numerical solutions of the Burgers' equation. Approximate function consists of the combination of the trigonometric B-splines. Integration of Burgers' equation has been achived by aid of the subdomain Galerkin method based on the trigonometric B-splines as an approximate functions. The resulting first order ordinary differential system has been converted into an iterative algebraic equation by use of the Crank-Nicolson method at successive two time levels. The suggested algorithm is tested on some well-known problems for the Burgers' equation.</description> </descriptions> </resource>
Görüntülenme | 23 |
İndirme | 10 |
Veri hacmi | 1.6 kB |
Tekil görüntülenme | 22 |
Tekil indirme | 9 |