Dergi makalesi Açık Erişim

Big Data Meets Telcos: A Proactive Caching Perspective

Bastug, Ejder; Bennis, Mehdi; Zeydan, Engin; Kader, Manhal Abdel; Karatepe, Ilyas Alper; Er, Ahmet Salih; Debbah, Merouane


MARC21 XML

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Big Data Meets Telcos: A Proactive Caching Perspective</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="p">JOURNAL OF COMMUNICATIONS AND NETWORKS</subfield>
    <subfield code="v">17</subfield>
    <subfield code="n">6</subfield>
    <subfield code="c">549-557</subfield>
  </datafield>
  <controlfield tag="001">81633</controlfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">Mobile cellular networks are becoming increasingly complex to manage while classical deployment/optimization techniques and current solutions (i.e., cell densification, acquiring more spectrum, etc.) are cost-ineffective and thus seen as stopgaps. This calls for development of novel approaches that leverage recent advances in storage/memory, context-awareness, edge/cloud computing, and falls into framework of big data. However, the big data by itself is yet another complex phenomena to handle and comes with its notorious 4V: Velocity, voracity, volume, and variety. In this work, we address these issues in optimization of 5G wireless networks via the notion of proactive caching at the base stations. In particular, we investigate the gains of proactive caching in terms of backhaul of-floadings and request satisfactions, while tackling the large-amount of available data for content popularity estimation. In order to estimate the content popularity, we first collect users' mobile traffic data from a Turkish telecom operator from several base stations in hours of time interval. Then, an analysis is carried out locally on a big data platform and the gains of proactive caching at the base stations are investigated via numerical simulations. It turns out that several gains are possible depending on the level of available information and storage size. For instance, with 10% of content ratings and 15.4 Gbyte of storage size (87% of total catalog size), proactive caching achieves 100% of request satisfaction and offloads 98% of the backhaul when considering 16 base stations.</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="2">opendefinition.org</subfield>
    <subfield code="a">cc-by</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Univ Oulu, Ctr Wireless Commun, SF-90100 Oulu, Finland</subfield>
    <subfield code="a">Bennis, Mehdi</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">AveaLabs, Istanbul, Turkey</subfield>
    <subfield code="a">Zeydan, Engin</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Univ Paris Saclay, Ctr Supelec, Large Networks &amp; Syst Grp LANEAS, Gif Sur Yvette, France</subfield>
    <subfield code="a">Kader, Manhal Abdel</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">AveaLabs, Istanbul, Turkey</subfield>
    <subfield code="a">Karatepe, Ilyas Alper</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">AveaLabs, Istanbul, Turkey</subfield>
    <subfield code="a">Er, Ahmet Salih</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Debbah, Merouane</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="b">article</subfield>
    <subfield code="a">publication</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Univ Paris Saclay, Ctr Supelec, Large Networks &amp; Syst Grp LANEAS, Gif Sur Yvette, France</subfield>
    <subfield code="a">Bastug, Ejder</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2015-01-01</subfield>
  </datafield>
  <controlfield tag="005">20210316055016.0</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:zenodo.org:81633</subfield>
    <subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="z">md5:df5b096ca2833f495bf4efc0104febc7</subfield>
    <subfield code="s">200</subfield>
    <subfield code="u">https://aperta.ulakbim.gov.trrecord/81633/files/bib-741f695f-b721-44d0-8202-ad97339f3147.txt</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
    <subfield code="a">Creative Commons Attribution</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1109/JCN.2015.000102</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
</record>
24
8
görüntülenme
indirilme
Görüntülenme 24
İndirme 8
Veri hacmi 1.6 kB
Tekil görüntülenme 24
Tekil indirme 8

Alıntı yap