Dergi makalesi Açık Erişim

Some results on sigma-ideal of sigma-prime ring

Turkmen, Selin; Aydin, Neset


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/78135</identifier>
  <creators>
    <creator>
      <creatorName>Turkmen, Selin</creatorName>
      <givenName>Selin</givenName>
      <familyName>Turkmen</familyName>
      <affiliation>Canakkale Onsekiz Mart Univ, Dept Math, Canakkale, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Aydin, Neset</creatorName>
      <givenName>Neset</givenName>
      <familyName>Aydin</familyName>
      <affiliation>Canakkale Onsekiz Mart Univ, Dept Math, Canakkale, Turkey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Some Results On Sigma-Ideal Of Sigma-Prime Ring</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2015</publicationYear>
  <dates>
    <date dateType="Issued">2015-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/78135</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.81043/aperta.78134</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.81043/aperta.78135</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">Let R be a sigma-prime ring with characteristic not 2, Z (R) be the center of R, I be a nonzero sigma-ideal of R, alpha, beta : R -&amp;gt; R be two automorphisms, d be a nonzero (alpha, beta)-derivation of R and h be a nonzero derivation of R : In the present paper, it is shown that (i) If d (I) subset of C-alpha,C-beta and beta commutes with sigma then R is commutative. (ii) Let alpha and beta commute with sigma. If a is an element of I boolean AND S-sigma (R) and [d(I), a](alpha,beta) subset of C-alpha,C-beta then a is an element of Z(R). (iii) Let alpha, beta and h commute with sigma. If dh (I) subset of C-alpha,C- beta and h(I) subset of I then R is commutative.</description>
  </descriptions>
</resource>
78
7
görüntülenme
indirilme
Görüntülenme 78
İndirme 7
Veri hacmi 1.0 kB
Tekil görüntülenme 77
Tekil indirme 7

Alıntı yap