Dergi makalesi Açık Erişim
Turkmen, Selin; Aydin, Neset
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/78135</identifier> <creators> <creator> <creatorName>Turkmen, Selin</creatorName> <givenName>Selin</givenName> <familyName>Turkmen</familyName> <affiliation>Canakkale Onsekiz Mart Univ, Dept Math, Canakkale, Turkey</affiliation> </creator> <creator> <creatorName>Aydin, Neset</creatorName> <givenName>Neset</givenName> <familyName>Aydin</familyName> <affiliation>Canakkale Onsekiz Mart Univ, Dept Math, Canakkale, Turkey</affiliation> </creator> </creators> <titles> <title>Some Results On Sigma-Ideal Of Sigma-Prime Ring</title> </titles> <publisher>Aperta</publisher> <publicationYear>2015</publicationYear> <dates> <date dateType="Issued">2015-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/78135</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.81043/aperta.78134</relatedIdentifier> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.81043/aperta.78135</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">Let R be a sigma-prime ring with characteristic not 2, Z (R) be the center of R, I be a nonzero sigma-ideal of R, alpha, beta : R -&gt; R be two automorphisms, d be a nonzero (alpha, beta)-derivation of R and h be a nonzero derivation of R : In the present paper, it is shown that (i) If d (I) subset of C-alpha,C-beta and beta commutes with sigma then R is commutative. (ii) Let alpha and beta commute with sigma. If a is an element of I boolean AND S-sigma (R) and [d(I), a](alpha,beta) subset of C-alpha,C-beta then a is an element of Z(R). (iii) Let alpha, beta and h commute with sigma. If dh (I) subset of C-alpha,C- beta and h(I) subset of I then R is commutative.</description> </descriptions> </resource>
Görüntülenme | 78 |
İndirme | 7 |
Veri hacmi | 1.0 kB |
Tekil görüntülenme | 77 |
Tekil indirme | 7 |