Konferans bildirisi Açık Erişim

A New Approach for Liver Classification Using Ridgelet/Ripplet-II Transforms, Feature Groups and ANN

Ozturk, Ayse Elif; Ceylan, Murat; Kivrak, Ali Sami


MARC21 XML

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield>
    <subfield code="o">oai:zenodo.org:77715</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">In this study, 68 liver MR images (28 of them labeled as hemangioma, 40 of them labeled as cyst by specialist radiologists) were classified by using artificial neural network (ANN). Ridgelet transform and its advanced new generation form (called Ripplet-II transform) were applied on these images to compare their effects on liver image classification. Feature vectors were generated by calculating mean, standard deviation, variance, skewness, kurtosis and moment values of coefficient matrices. Firstly, all feature vectors were given as inputs to an ANN and classification process was realized. Then, vectors were seperated into three groups and classified by using three ANNs. This procedure was repeated with two ANNs and two groups of feature vectors. Outputs of the systems which used more than one ANN were evaluated by implementing AND and OR operations seperately. Accuracy, sensitivity and specifity values of obtained results were calculated and compared. The best results were achieved by evaluating the system which used three ANNs and three groups of statistical feature vectors, with AND / OR operations.</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="a">6TH EUROPEAN CONFERENCE OF THE INTERNATIONAL FEDERATION FOR MEDICAL AND BIOLOGICAL ENGINEERING</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="a">Creative Commons Attribution</subfield>
    <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Ozturk, Ayse Elif</subfield>
    <subfield code="u">Selcuk Univ, Fac Engn, Dept Elect &amp; Elect Engn, Konya, Turkey</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="z">md5:687eb762489ca99bf919b59752ae25e3</subfield>
    <subfield code="s">240</subfield>
    <subfield code="u">https://aperta.ulakbim.gov.trrecord/77715/files/bib-5a17f8f4-7c49-4fc8-a6f3-7f920696340c.txt</subfield>
  </datafield>
  <controlfield tag="005">20210316045636.0</controlfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2015-01-01</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1007/978-3-319-11128-5_33</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">A New Approach for Liver Classification Using Ridgelet/Ripplet-II Transforms, Feature Groups and ANN</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Ceylan, Murat</subfield>
    <subfield code="u">Selcuk Univ, Fac Engn, Dept Elect &amp; Elect Engn, Konya, Turkey</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Kivrak, Ali Sami</subfield>
    <subfield code="u">Selcuk Univ, Fac Med, Dept Radiol, Konya, Turkey</subfield>
  </datafield>
  <controlfield tag="001">77715</controlfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
</record>
34
7
görüntülenme
indirilme
Görüntülenme 34
İndirme 7
Veri hacmi 1.7 kB
Tekil görüntülenme 31
Tekil indirme 7

Alıntı yap